A Comprehensive Wellbore Stability Model Considering Poroelastic and Thermal Effects for Inclined Wellbores in Deepwater Drilling
Exploring and developing oil and gas in deepwater field is an important trend of the oil and gas industry. Development of deepwater oil and gas fields from a platform always requires a number of directional wells or extended reach wells targeting to different depth of water in various azimuth. Drilling of these wells is mostly associated with a series of wellbore instability problems that are not encountered in onshore or shallow water drilling. In the past decades, a number of studies on wellbore stability have been conducted. However, few of the models are specific for wellbore stability of the inclined deepwater wellbores. In this work, a comprehensive wellbore stability model considering poroelastic and thermal effects for inclined wellbores in deepwater drilling is developed. The numerical method of the model is also presented. The study shows that for a strike-slip stress regime, the wellbore with a low inclination poses more risk of wellbore instability than the wellbore with a high inclination. It also shows that cooling the wellbore will stabilize the wellbore while excessive cooling could cause wellbore fracturing, and the poroelastic effect could narrow the safe mud weight window. The highest wellbore collapse pressure gradients at all of the analyzed directions are obtained when poroelastic effect is taken into account meanwhile the lowest wellbore fracture pressure gradients at all of the analyzed directions are obtained when both of poroelastic effect and thermal effect are taken into account. For safe drilling in deepwater, both of thermal and poroelastic effects are preferably considered to estimate wellbore stability. The model provides a practical tool to predict the stability of inclined wellbores in deepwater drilling.