Exact Nonlinear Dynamic Analysis of a Beam With a Nonlinear Vibration Absorber and With Various Boundary Conditions

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Mohammad Bukhari ◽  
Oumar Barry

Abstract We study the nonlinear vibration of a beam with an attached grounded and ungrounded nonlinear vibration absorber (NVA) using the exact natural frequencies and mode shapes of the loaded beam. The nonlinearity in the beam is due to midplane stretching and that in the NVA is of cubic stiffness nonlinearity. We consider various boundary conditions and derive their closed-form characteristic equations and mode shapes. The method of multiple scales (MMS) is directly applied to the nonlinear partial differential equations of motion to obtain explicit expressions of the nonlinear frequency, modulation, and loci of the saddle-node bifurcation equations. Our analytical approach is validated using direct numerical simulation. Parametric studies demonstrate that the performance of the NVA does not only depend on its key design variables and location, but also on the boundary conditions, midplane stretching of the beam, and type of configuration (i.e., grounded NVA versus ungrounded NVA). Our analysis also indicates that the use of common approach such as employing approximate modes in estimating the nonlinear response of a loaded beam produces significant error (i.e., up to 1200% in some case). These observations suggest that the exact modes shape and natural frequencies are required for a precise investigation of the nonlinear dynamic of loaded beams. These findings could contribute to the design improvement of NVAs, microelectromechanical systems (MEMS), energy harvesters, and metastructures.

Author(s):  
Shahin Mohammadrezazadeh ◽  
Ali Asghar Jafari

This paper investigates the nonlinear vibration responses of laminated composite conical shells surrounded by elastic foundations under S-S and C-C boundary conditions via an approximate approach. The laminated composite conical shells are modeled based on classical shell theory of Love employing von Karman nonlinear theory. Nonlinear vibration equation of the conical shells is extracted by handling Lagrange method. The linear and nonlinear vibration responses are obtained via an approximate method which combines Lindstedt-Poincare method with modal analysis. The validation of this study is carried out through the comparison of the results of this study with results of published literature. The effects of several parameters including the constants of elastic foundations, boundary conditions, total thickness, length, large edge radius and semi-vertex angle on the values of fundamental linear frequency and curves of amplitude parameter versus nonlinear frequency ratio for laminated composite conical shells with both S-S and C-C boundary conditions are investigated.


Author(s):  
U. Yuceoglu ◽  
O. Gu¨vendik ◽  
V. O¨zerciyes

In this present study, the “Free Bending Vibrations of a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap in Mindlin Plates or Panels” are theoretically analyzed and are numerically solved in some detail. The “plate adherends” and the upper and lower “doubler plates” of the “Bonded Joint” system are considered as dissimilar, orthotropic “Mindlin Plates” joined through the dissimilar upper and lower very thin adhesive layers. There is a symmetrically and centrally located “Gap” between the “plate adherends” of the joint system. In the “adherends” and the “doublers” of the “Bonded Joint” assembly, the transverse shear deformations and the transverse and rotary moments of inertia are included in the analysis. The relatively very thin adhesive layers are assumed to be linearly elastic continua with transverse normal and shear stresses. The “damping effects” in the entire “Bonded Joint” system are neglected. The sets of the dynamic “Mindlin Plate” equations of the “plate adherends”, the “double doubler plates” and the thin adhesive layers are combined together with the orthotropic stress resultant-displacement expressions in a “special form”. This system of equations, after some further manipulations, is eventually reduced to a set of the “Governing System of the First Order Ordinary Differential Equations” in terms of the “state vectors” of the problem. Hence, the final set of the aforementioned “Governing Systems of Equations” together with the “Continuity Conditions” and the “Boundary conditions” facilitate the present solution procedure. This is the “Modified Transfer Matrix Method (MTMM) (with Interpolation Polynomials). The present theoretical formulation and the method of solution are applied to a typical “Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap”. The effects of the relatively stiff (or “hard”) and the relatively flexible (or “soft”) adhesive properties, on the natural frequencies and mode shapes are considered in detail. The very interesting mode shapes with their dimensionless natural frequencies are presented for various sets of boundary conditions. Also, several parametric studies of the dimensionless natural frequencies of the entire system are graphically presented. From the numerical results obtained, some important conclusions are drawn for the “Bonded Joint System” studied here.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


1992 ◽  
Vol 59 (2S) ◽  
pp. S197-S204 ◽  
Author(s):  
Jean Wu-Zheng Zu ◽  
Ray P. S. Han

A free flexural vibrations of a spinning, finite Timoshenko beam for the six classical boundary conditions are analytically solved and presented for the first time. Expressions for computing natural frequencies and mode shapes are given. Numerical simulation studies show that the simply-supported beam possesses very peculiar free vibration characteristics: There exist two sets of natural frequencies corresponding to each mode shape, and the forward and backward precession mode shapes of each set coincide identically. These phenomena are not observed in beams with the other five types of boundary conditions. In these cases, the forward and backward precessions are different, implying that each natural frequency corresponds to a single mode shape.


1957 ◽  
Vol 24 (3) ◽  
pp. 435-439
Author(s):  
S. Mahalingam

Abstract A one-term approximate solution is given for the amplitudes of steady forced vibration of a single-degree-of-freedom system with a nonlinear (nonsymmetrical) spring characteristic. The method is similar to that of Martienssen (1), but the construction uses a modified curve (or “frequency function”) in place of the actual spring characteristic, the curve being so chosen that it gives the correct frequency for free vibrations. The method is extended to deal with a nonlinear vibration absorber fitted to a linear system.


2020 ◽  
Vol 102 (3) ◽  
pp. 1239-1270
Author(s):  
Alex Elías-Zúñiga ◽  
Luis Manuel Palacios-Pineda ◽  
Daniel Olvera-Trejo ◽  
Oscar Martínez-Romero

Sign in / Sign up

Export Citation Format

Share Document