Nonlinear Stiffness Analysis of Spring-Loaded Inverted Slider Crank Mechanisms With a Unified Model

2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Zhongyi Li ◽  
Shaoping Bai ◽  
Weihai Chen ◽  
Jianbin Zhang

Abstract A mechanism with lumped-compliance can be constructed by mounting springs at joints of an inverted slider crank mechanism. Different mounting schemes bring change in the stiffness performance. In this paper, a unified stiffness model is developed for a comprehensive analysis of the stiffness performance for mechanisms constructed with different spring mounting schemes. With the model, stiffness behaviors of spring-loaded inverted slider crank mechanisms are analyzed. Influences of each individual spring on the overall performance are characterized. The unified stiffness model allows designing mechanisms for a desired stiffness performance, such as constant-torque mechanism and variable stiffness mechanism, both being illustrated with a design example and experiments.

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775248 ◽  
Author(s):  
Bin He ◽  
Shoulin Xu ◽  
Zhipeng Wang

In this article, the most contribution is to propose a novel general stiffness model to analyze the stiffness of a wall-climbing hexapod robot. First, we propose a new general stiffness model of serial mechanism, which includes the linear and nonlinear stiffness models. By comparison, the nonlinear stiffness model is a variable stiffness model which introduces the external load force as a variable, obtaining that the nonlinear stiffness model can greatly improve the accuracy of stiffness model than linear stiffness model. Then, the stiffness model of one leg of the robot and the overall stiffness model of the robot are derived based on the general stiffness model. Next, to improve the stiffness of the robot, a new minimum and maximum stiffness are introduced, which provide with effective reference for the selection and optimization of the structural parameters of the robot. Finally, we develop a new wall-climbing hexapod robot based on selection and optimization of the structural parameters, then the experiments are used to show that the selection of structure parameters of the robot effectively improve the stiffness of the robot.


2011 ◽  
Vol 4 (3) ◽  
pp. 723-757 ◽  
Author(s):  
◽  
N. Bellouin ◽  
W. J. Collins ◽  
I. D. Culverwell ◽  
P. R. Halloran ◽  
...  

Abstract. We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772413
Author(s):  
Teng-fei Tang ◽  
Jun Zhang

This article proposes two types of lockable spherical joints which can perform three different motion patters by locking or unlocking corresponding rotational axes. Based on the proposed lockable spherical joints, a general reconfigurable limb structure with two passive joints is designed with which the conceptual designs of two types of Exechon-like parallel kinematic machines are completed. To evaluate the stiffness of the proposed Exechon-like parallel kinematic machines, an expanded kinetostatic model is established by including the compliances of all joints and limb structures. The prediction accuracy of the expanded stiffness model is validated by numerical simulations. The comparative stiffness analyses prove that the Exe-Variant parallel kinematic machine claims competitive rigidity performance to the Exechon parallel kinematic machine. The present work can provide useful information for further investigations on structural enhancement, rigidity improvement, and dynamic analyses of other Exechon-like parallel kinematic machines.


2014 ◽  
Vol 7 (1) ◽  
pp. 361-386 ◽  
Author(s):  
D. N. Walters ◽  
K. D. Williams ◽  
I. A. Boutle ◽  
A. C. Bushell ◽  
J. M. Edwards ◽  
...  

Abstract. We describe Global Atmosphere 4.0 (GA4.0) and Global Land 4.0 (GL4.0): configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) community land surface model developed for use in global and regional climate research and weather prediction activities. GA4.0 and GL4.0 are based on the previous GA3.0 and GL3.0 configurations, with the inclusion of developments made by the Met Office and its collaborators during its annual development cycle. This paper provides a comprehensive technical and scientific description of GA4.0 and GL4.0 as well as details of how these differ from their predecessors. We also present the results of some initial evaluations of their performance. Overall, performance is comparable with that of GA3.0/GL3.0; the updated configurations include improvements to the science of several parametrisation schemes, however, and will form a baseline for further ongoing development.


2020 ◽  
Vol 56 (9) ◽  
pp. 36 ◽  
Author(s):  
YAO Ligang ◽  
LI Jingyi ◽  
DONG Hui

Robotica ◽  
2022 ◽  
pp. 1-15
Author(s):  
Zhaoyu Liu ◽  
Yuxuan Wang ◽  
Jiangbei Wang ◽  
Yanqiong Fei ◽  
Qitong Du

Abstract The aim of this work is to design and model a novel modular bionic soft robot for crawling and crossing obstacles. The modular bionic soft robot is composed of several serial driving soft modules, each module is composed of two parallel soft actuators. By analyzing the influence of working pressure and manufacturing size on the stiffness of the modular bionic soft robot, the nonlinear variable stiffness model of the modular bionic soft robot is established. Based on this model, the spatial states and design parameters of the modular bionic soft robot are discussed when the modular bionic soft robot can pass through the obstacle. Experiments show that when the inflation air pressure of the modular bionic soft robot is 70 kPa, its speed can reach 7.89 mm/s and the height of obstacles passed by it can reach 42.8 mm. The feasibility of the proposed modular bionic soft robot and nonlinear variable stiffness model is verified by locomotion experiments.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 101 ◽  
Author(s):  
Shan Zhang ◽  
Zheng Sun ◽  
Jili Lu ◽  
Lei Li ◽  
Chunlei Yu ◽  
...  

This paper aims to investigate how to determine the basic parameters of the helical compression spring which supports a symmetrical cable-driven hybrid joint (CDHJ) towards the elbow joint of wheelchair-mounted robotic manipulator. The joint design of wheelchair-mounted robotic manipulator needs to consider lightweight but robust, workspace requirements, and variable stiffness elements, so we propose a CDHJ which becomes a variable stiffness joint due the spring under bending and compression provides nonlinear stiffness characteristics. Intuitively, different springs will make the workspace and stiffness of CDHJ different, so we focus on studying the spring effects on workspace and stiffness of CDHJ for its preliminary design. The key to workspace and stiffness analysis of CDHJ is the cable tension, the key to calculate the cable tension is the lateral bending and compression spring model. The spring model is based on Castigliano’s theorem to obtain the relationship between spring force and displacement. The simulation results verify the correctness of the proposed spring model, and show that the spring, with properly chosen parameters, can increase the workspace of CDHJ whose stiffness also can be adjusted to meet the specified design requirements. Then, the modelling method can be extended to other cable-driven mechanism with a flexible compression spring.


2014 ◽  
Vol 592-594 ◽  
pp. 2303-2307
Author(s):  
M. Ganesh ◽  
R. Karthikeyan ◽  
Anjan Kumar Dash ◽  
M. Vikramadityan ◽  
R. Gopalachary

This paper presents a new design of a 3-RRR planar manipulator with non-planar legs. In contrast to the conventional 3-RRR planar parallel mechanism, the links are not planar. They are elevated above the X-Y plane and non planar legs are constructed. The kinematics of this model is realized on a common projected plane and traced back to its elevated position. The moment of inertia for the inclined links is computed. A stiffness model is established for the proposed design of 3-RRR manipulator and compared with a conventional 3-RRR planar manipulator. The analysis shows how the proposed design has better stiffness along all the three directions of motion.


Author(s):  
Michael Boyarsky ◽  
Megan Heenan ◽  
Scott Beardsley ◽  
Philip Voglewede

This paper aims to emulate human motion with a robot for the purpose of improving human-robot interaction (HRI). In order to engineer a robot that demonstrates functionally similar motion to humans, aspects of human motion such as variable stiffness must be captured. This paper successfully determined the variable stiffness humans use in the context of a 1 DOF disturbance rejection task by optimizing a time-varying stiffness parameter to experimental data in the context of a neuro-motor Simulink model. The significant improved agreement between the model and the experimental data in the disturbance rejection task after the addition of variable stiffness demonstrates how important variable stiffness is to creating a model of human motion. To enable a robot to emulate this motion, a predictive stiffness model was developed that attempts to reproduce the stiffness that a human would use in a given situation. The predictive stiffness model successfully decreases the error between the neuro-motor model and the experimental data when compared to the neuro-motor model with a constant stiffness value.


Sign in / Sign up

Export Citation Format

Share Document