Analysis of Leaf Seal Leakage Performance Under the Influence of Manufacturing Variations Using Experiment and Computational Fluid Dynamics

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Clemens Griebel

Abstract In this paper, test data are combined with results from two different computational fluid dynamics (CFD) models to investigate the leakage performance of leaf seals. Experimental data are gathered for centric rotor position using a rotating test rig at various rotational speeds, inlet pressures, and preswirl velocities. The test results are compared to brush and labyrinth seal leakage data from previous studies and reveal elevated leakage rates of the leaf seal. As the tested leaf seals are subject to thermal leaf deformation from welding during the manufacturing process, the influence of geometry variations within the leaf pack on leakage performance is investigated with the help of numerical simulations. Both a fully resolved leaf model and a modeling approach based on porous media are used. The CFD models are validated based on pressure measurements within the up- and downstream coverplate gaps at three different radii. Both CFD models show good agreement with test data for different inlet parameters. A variation of cold clearance shows moderate influence on leakage and small clearances can be brought into context with hydrodynamic lift-up indicated by experimental leakage data. Much higher sensitivity on leakage mass flow is predicted for variations in leaf spacing at the leaf root and leaf tip. The latter is discussed as an explanation for the measured leakage of the test seal with its manufacturing variations, while the first quantitatively shows optimization potential at the design stage of leaf seals.

2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


Author(s):  
Jian-Xun Wang ◽  
Christopher J. Roy ◽  
Heng Xiao

Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle for uncertainty quantifications in CFD problems is the large model discrepancies associated with the CFD models used for uncertainty propagation. Neglecting or improperly representing the model discrepancies leads to inaccurate and distorted uncertainty distribution for the quantities of interest (QoI). High-fidelity models, being accurate yet expensive, can accommodate only a small ensemble of simulations and thus lead to large interpolation errors and/or sampling errors; low-fidelity models can propagate a large ensemble, but can introduce large modeling errors. In this work, we propose a multimodel strategy to account for the influences of model discrepancies in uncertainty propagation and to reduce their impact on the predictions. Specifically, we take advantage of CFD models of multiple fidelities to estimate the model discrepancies associated with the lower-fidelity model in the parameter space. A Gaussian process (GP) is adopted to construct the model discrepancy function, and a Bayesian approach is used to infer the discrepancies and corresponding uncertainties in the regions of the parameter space where the high-fidelity simulations are not performed. Several examples of relevance to CFD applications are performed to demonstrate the merits of the proposed strategy. Simulation results suggest that, by combining low- and high-fidelity models, the proposed approach produces better results than what either model can achieve individually.


2015 ◽  
Vol 73 (5) ◽  
pp. 969-982 ◽  
Author(s):  
Edward Wicklein ◽  
Damien J. Batstone ◽  
Joel Ducoste ◽  
Julien Laurent ◽  
Alonso Griborio ◽  
...  

Computational fluid dynamics (CFD) modelling in the wastewater treatment (WWT) field is continuing to grow and be used to solve increasingly complex problems. However, the future of CFD models and their value to the wastewater field are a function of their proper application and knowledge of their limits. As has been established for other types of wastewater modelling (i.e. biokinetic models), it is timely to define a good modelling practice (GMP) for wastewater CFD applications. An International Water Association (IWA) working group has been formed to investigate a variety of issues and challenges related to CFD modelling in water and WWT. This paper summarizes the recommendations for GMP of the IWA working group on CFD. The paper provides an overview of GMP and, though it is written for the wastewater application, is based on general CFD procedures. A forthcoming companion paper to provide specific details on modelling of individual wastewater components forms the next step of the working group.


Author(s):  
M. T. F. Owen ◽  
D. G. Kröger

The development of an efficient and reliable method of evaluating the performance of an air-cooled steam condenser (ACC) under windy conditions using computational fluid dynamics (CFD) is presented. A two-step modeling approach is employed as a result of computational limitations. The numerical ACC model developed in this study makes use of the pressure jump fan model, among other approximations, in an attempt to minimize the computational expense of the performance evaluation. The accuracy of the numerical model is verified through a comparison of the numerical results to test data collected during full-scale tests carried out on an operational ACC. Good correlation is achieved between the numerical results and test data. The effect of wind on ACC performance at El Dorado Power Plant (Nevada, USA) is investigated. It is found that reduced fan performance due to distorted flow at the inlet of the upstream fans is the primary contributor to the reduction in ACC performance associated with increased wind speed in this case. The model developed in this study has the potential to allow for the evaluation of large ACC installations and provides a reliable platform from which further investigations into improving ACC performance under windy conditions can be carried out.


Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Author(s):  
N R J Williams

This paper investigates the potential performance improvements of adding contracted loaded tips to propellers. A Wageningen B5-75 Series propeller has been simulated and verified against published experimental test data. Contracted tips have then been added to a Wageningen propeller and the modified propeller then simulated. A CFD method and model has been developed. Pressure, velocity and vector plots have all been analysed detailing the mechanism behind the contracted tips. Limitations behind this method have been explored and explained, and recommendations for further studies made. The development of a database of propeller characteristics and performance chart data to allow quick evaluation of designs has also been proposed. 


Author(s):  
Jorge Aramburu ◽  
Raúl Antón ◽  
Macarena Rodríguez-Fraile ◽  
Bruno Sangro ◽  
José Ignacio Bilbao

AbstractYttrium-90 radioembolization (RE) is a widely used transcatheter intraarterial therapy for patients with unresectable liver cancer. In the last decade, computer simulations of hepatic artery hemodynamics during RE have been performed with the aim of better understanding and improving the therapy. In this review, we introduce the concept of computational fluid dynamics (CFD) modeling with a clinical perspective and we review the CFD models used to study RE from the fluid mechanics point of view. Finally, we show what CFD simulations have taught us about the hemodynamics during RE, the current capabilities of CFD simulations of RE, and we suggest some future perspectives.


2021 ◽  
Author(s):  
Milorad B. Dzodzo

Abstract Validation of Computational Fluid Dynamics (CFD) models for industrial applications is more challenging due to the complex geometry and long duration and complexity of various postulated accident scenarios, resulting in different and wide ranges of length and time scales. Thus, CFD models for industrial applications are restricted to the smaller subdomains and short periods of postulated accident scenarios. Validation is most often based on the comparisons with experimental results obtained with the scaled down test facilities. Thus, the effect of scaling needs to be considered and incorporated in the validation process. During validation, valuable experience is gained related to geometry simplifications, needed mesh size, turbulence and heat transfer modeling, effects of initial and boundary conditions, different fluid thermophysical properties and interaction with other phenomena and processes. Based on the gained experience the validated CFD models are adjusted and used to simulate prototypical domains and conditions. Several examples of validations of CFD models for industrial applications are presented.


Sign in / Sign up

Export Citation Format

Share Document