IMU-based Optimization Control of a Soft Exosuit for Hip Extension and Flexion Assistance
Abstract The optimization of the assistive force for soft exosuits is crucial to the improvement of their assistive efficiency. In this paper, an inertial measurement unit (IMU)-based optimization controller was proposed to provide effective hip extension and flexion assistance for soft hip-assistive exosuits during outdoor walking. Initially, the optimal parameters of the assistive profiles defined by two functions were determined based on an analysis of biological hip power. Secondly, the assistive profiles were optimized in real time based on the detected information of hip angles from two IMUs bound to both thighs. Specifically, the peak and offset timings of the assistive profiles were estimated from the previous gait cycle, while the start and stop timings were estimated using current gait information. Lastly, the experiments including four subjects were scheduled to evaluate the performance of proposed controller. Each subject carried a 15kg load to walk on a treadmill at a constant speed, and two of them completed the outdoor walking tests at a self-determined pace while carried a 15kg load. The results show that the assistive profiles can be reliably and orderly delivered across the subjects. In particular, during outdoor self-paced walking, the wearer's natural gait can be maintained by optimizing the assistive profiles. During walking on a treadmill at a constant speed of 1.53 m/s, metabolic rate wearing the soft exosuit with assistance turned on was reduced by 8.53 ± 2.65% (average ± SEM), compared with wearing the soft exosuit with assistance turned off.