An Energy Efficient Power-Split Hybrid Transmission System to Drive Hydraulic Implements in Construction Machines

Author(s):  
Mateus Bertolin ◽  
Andrea Vacca

Abstract This paper proposes a novel hybrid power-split transmission to drive hydraulic implements in construction machinery. The highly efficient power-split hybrid transmission is combined with displacement controlled (DC) actuators to eliminate throttling losses within the hydraulic system and achieve higher fuel savings. The architecture design, sizing and power management are addressed. Simulation results considering a realistic truck-loading cycle on a mini excavator demonstrate the feasibility of the idea. A systematic comparison between the proposed system and the previously developed series-parallel hybrid is also carried out. The paper compares engine operation and fuel consumption of the previously mentioned hybrid system with the original non-hybrid load-sensing machine. It is shown that by implementing an efficient engine operation control, the proposed system can achieve up to 60.2% improvement in fuel consumption when compared to the original machine and consume 11.8% less than the previously developed series-parallel hybrid with DC actuation. Other advantages of the proposed solution include a much steadier engine operation, which opens to the possibility of designing an engine for optimal consumption and emissions at a single operating point as well as greatly reduce pollutant emissions. A steadier prime mover operation should also benefit fully electric machines, as the battery would not be stressed with heavy transients.

Author(s):  
Guoqiang Li ◽  
Daniel Görges

This paper addresses the integration of the energy management and the shift control in parallel hybrid electric vehicles with dual-clutch transmission to reduce the fuel consumption, decrease the pollutant emissions, and improve the driving comfort simultaneously. Dynamic programming with a varying weighting factor in the cost function is proposed to balance the shift frequency and the fuel consumption for the power-split control and gear schedule design. Simulation results present that the drivability can be improved with a varying weighting factor due to fewer shift events while the fuel consumption is only slightly increased compared to dynamic programming with a constant weighting factor. A shift-energy-management strategy integrating the upshift and power-split control based on a multi-objective optimization is presented where model predictive control is employed to ensure engine load rate constraints. The strategy can smoothen the engine torque through torque compensation from the electric motor to prevent engine transient emissions resulting from a sudden load change. In a simulation study, the NOx and HC emissions could be reduced by 1.4% and 2.6% with 2% increase of the overall fuel consumption for the Federal Test Procedure 75 by smoothening the engine torque. For the New European Driving Cycle, 0.9% and 1.1% reduction of NOx and HC emissions could be achieved with only 0.3% more fuel consumption.


Author(s):  
Shima Nazari ◽  
Jason Siegel ◽  
Robert Middleton ◽  
Anna Stefanopoulou

This work studies a novel low voltage (<60 V) hybrid system that supports engine boosting and downsizing in addition to start-stop, regenerative braking, and constrained torque assist/regeneration. The hybrid power split supercharger (PSS) shares a 9 kW motor between supercharging the engine or providing hybrid functionalities through a planetary gear set, a brake and a bypass valve. The PSS operation is limited to only one of the parallel hybrid or boosting modes at a time, necessitating a highly optimized decision making algorithm to select the device mode and power split ratio. In this work an adaptive equivalent consumption minimization strategy (A-ECMS) is developed for energy management of the PSS. The A-ECMS effectiveness is compared against a dynamic programming (DP) solution with full drive cycle preview through hardware-in-the-loop experiments on an engine dynamometer testbed. The experiments show that the PSS with A-ECMS reduces a vehicle fuel consumption by 18.4% over standard FTP75 cycle compared to a baseline turbocharged engine, while global optimal DP solution decreases the fuel consumption by 22.8% compared to baseline.


2020 ◽  
Vol 197 ◽  
pp. 07010
Author(s):  
Paolo Casoli ◽  
Barbara Zardin ◽  
Salvatore Ardizio ◽  
Massimo Borghi ◽  
Francesco Pintore ◽  
...  

Increasing interest in reducing pollutant emissions and fuel consumption of off-road vehicles has led to research alternative systems that aim to reduce the power dissipations of the hydraulic circuits. This work presents the advantages of few alternative solutions for a hydraulic high-pressure circuit of a medium-size tractor. The standard high-pressure circuit is a typical multiusers load sensing system that uses a single variable displacement pump to feed: steering, trailer brake, rear remotes, hitch and suspension. The alternative architectures have been simulated and compared in terms of mechanical energy consumption. In particular, the steering has been separated from the circuit, it has been actuated by means of a dedicated pump moved by an electric motor, in this way the priority valve could be removed and losses due the pressure compensators are reduced. A further architecture based on the insertion of the LS signal conditioner was studied. The results show that relevant energy saving can be achieved with the new alternative architectures; the physical prototyping of the most promising solutions will be realized as the next step of the project.


2017 ◽  
Author(s):  
Thiago R. V. Silva ◽  
José G. C. Baeta ◽  
Nilton A. D. Neto ◽  
Augusto C. T. Malaquias ◽  
Matheus G. F. Carvalho ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4747
Author(s):  
Sascha Krysmon ◽  
Frank Dorscheidt ◽  
Johannes Claßen ◽  
Marc Düzgün ◽  
Stefan Pischinger

The combination of different propulsion and energy storage systems for hybrid vehicles is changing the focus in the field of powertrain calibration. Shorter time-to-market as well as stricter legal requirements regarding the validation of Real Driving Emissions (RDE) require the adaptation of current procedures and the implementation of new technologies in the powertrain development process. In order to achieve highest efficiencies and lowest pollutant emissions at the same time, the layout and calibration of the control strategies for the powertrain and the exhaust gas aftertreatment system must be precisely matched. An optimal operating strategy must take into account possible trade-offs in fuel consumption and emission levels, both under highly dynamic engine operation and under extended environmental operating conditions. To achieve this with a high degree of statistical certainty, the combination of advanced methods and the use of virtual test benches offers significant potential. An approach for such a combination is presented in this paper. Together with a Hardware-in-the-Loop (HiL) test bench, the novel methodology enables a targeted calibration process, specifically designed to address calibration challenges of hybridized powertrains. Virtual tests executed on a HiL test bench are used to efficiently generate data characterizing the behavior of the system under various conditions with a statistically based evaluation identifying white spots in measurement data, used for calibration and emission validation. In addition, critical sequences are identified in terms of emission intensity, fuel consumption or component conditions. Dedicated test scenarios are generated and applied on the HiL test bench, which take into account the state of the system and are adjusted depending on it. The example of one emission calibration use case is used to illustrate the benefits of using a HiL platform, which achieves approximately 20% reduction in calibration time by only showing differences of less than 2% for fuel consumption and emission levels compared to real vehicle tests.


Author(s):  
Benjamin J. Lawler ◽  
Zoran S. Filipi

A simulation study was performed to evaluate the potential fuel economy benefits of integrating a dual-mode SI-HCCI engine into various vehicle architectures. The vehicle configurations that were considered include a conventional vehicle, a mild parallel hybrid, and a power-split hybrid. The three configurations were modeled and compared in detail for a given engine size (2.0 L for the conventional vehicle, 2.0 L for the mild parallel, and 1.5 L for the power-split) over the EPA UDDS (city) and Highway cycles. The results show that the dual-mode engine in the conventional vehicle offers a modest gain in vehicle fuel economy of approximately 5–7%. The gains were modest due to an advanced 6-speed transmission and a practically-based shift schedule, with which only 30% of the operating points were in the HCCI range for the city cycle and 56% for the highway cycle. The mild parallel hybrid achieved 32% better fuel economy than the conventional vehicle, both with SI engines. For the dual-mode engine in the mild parallel hybrid, a specific control strategy was used to manipulate engine operation in an attempt to minimize the number of engine mode transitions and maximize the time spent in HCCI. The parallel hybrid with the dual-mode engine and modified control strategy provides dramatic improvements of up to 48% in city driving, demonstrating that the addition of HCCI has a more significant effect with parallel hybrids than conventional vehicles. The power-split hybrid simulation showed that adding a dual-mode engine had an insignificant effect on vehicle fuel economy, mostly due to the ability of the planetary gear set to act as an e-CVT and keep the engine at relatively high loads. Finally, a systematic study of engine sizing provides guidelines for selecting the best option for a given vehicle application by characterizing the vehicle level interactions, and their effect on fuel economy, over an engine displacement sweep.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2021 ◽  
Vol 13 (14) ◽  
pp. 8066
Author(s):  
Thowayeb H. Hassan ◽  
Abu Elnasr E. Sobaih ◽  
Amany E. Salem

The cost of fuel and its availability are among the most major concerns for aircrafts and the aviation industry overall. Environmental difficulties with chemical pollutant emissions emitted by aviation machines are also connected to fuel consumption. As a result, it is crucial to examine factors that affect the overall fuel usage and consumption in the airport-based aviation industry. Several variables were investigated related to the total fuel consumed, such as dry operating weight (DOW) (KG), zero-fuel weight (ZFW), take-off weight (TOW), air distance (AIR DIST) (KM), and ground distance (GDN DIST). Analysis of the correlation between total fuel consumed as well as the extra fuel and selected variables was conducted. The results showed that the most positively associated factors with the total used fuel were the air distance (r2 = 0.86, p < 0.01), ground distance (r2 = 0.78, p < 0.01), TOW (r2 = 0.68, p < 0.01), and flight time (r2 = 0.68, p < 0.01). There was also a strong positive association between the average fuel flow (FF) and actual TOW (r2 = 0.74, p < 0.01) as well as ZFW (r2 = 0.61, p < 0.01). The generalized linear model (GLM) was utilized to assess the predictions of total energy usage after evaluating important outliers, stability of the homogeneity of variance, and the normalization of the parameter estimation. The results of multiple linear regression revealed that the most significant predictors of the total consumed fuel were the actual ZFW (p < 0.01), actual TOW (p < 0.01), and actual average FF (p < 0.05). The results interestingly confirmed that wind speed has some consequences and effects on arrival fuel usage. The result reflects that thermal and hydrodynamic economies impact on the flying fuel economy. The research has various implications for both scholars and practitioners of aviation industry.


Author(s):  
Ioannis Goulos ◽  
Fakhre Ali ◽  
Konstantinos Tzanidakis ◽  
Vassilios Pachidis ◽  
Roberto d'Ippolito

This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft–powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light (TEL) aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios. Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation (FOCA). Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass (AUM) of the aircraft. It is demonstrated that accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft–powerplant systems, in terms of operational performance and environmental impact.


Author(s):  
Mirko Baratta ◽  
Stefano d’Ambrosio ◽  
Daniela Misul ◽  
Ezio Spessa

An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter CNG (compressed natural gas) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure and temperature at different locations on the engine intake and exhaust systems as well as ‘engine-out’ pollutant emissions have been measured. The signals correlated to the engine operation have been acquired by means of a National Instruments PXI-DAQ system and a home developed software. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a CAD procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads and relative air-fuel ratios (up to the lean operation). For stoichiometric operation, the addition of hydrogen to CNG has produced a bsfc reduction ranging between 2 to 7% and a bsTHC decrease up to the 40%. These benefits have appeared to be even higher for lean mixtures. Moreover, hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. As a matter of fact, hydrogen addition has generally resulted into extended operation up to RAFR = 1.8. Still, a discrepancy in the abovementioned conclusions was observed depending on the engine cylinder considered.


Sign in / Sign up

Export Citation Format

Share Document