Overdischarge Detection and Prevention with Temperature Monitoring of Li-ion Batteries and Linear Regression-based Machine Learning

Author(s):  
Bing Li ◽  
Casey Jones ◽  
Vikas Tomar

Abstract This work focuses on the use of linear regression analysis-based machine learning for the prediction of the end of discharge of a commercial prismatic lithium (Li)-ion cell. The cell temperature was recorded during the cycling of Li-ion cells and the relation between the open circuit voltage and cell temperature was used in the development of the linear regression-based machine learning algorithm. The peak temperature was selected as the indicator of battery end of discharge. A battery management system using a pyboard microcontroller was constructed to monitor the temperature of the cell under test, and was also used to control a MOSFET that acted as a switch to disconnect the cell from the circuit. The method used an initial 10 charge and discharge cycles at a rate of 1C as the training data, then another charge and discharge cycle for the testing data. During the test cycling, the discharge was continued beyond the cutoff voltage to initiate an overdischarge while the temperature of the cell was continuously monitored. The experiment was performed on 3 different cells, and the overdischarge for each was secured within 0.1 V of the cutoff voltage. The results of these experiments show that a linear regression-based analysis can be implemented to detect an overdischarge condition of a cell based on the anticipated peak temperature during discharge.

2021 ◽  
Vol 11 (9) ◽  
pp. 3866
Author(s):  
Jun-Ryeol Park ◽  
Hye-Jin Lee ◽  
Keun-Hyeok Yang ◽  
Jung-Keun Kook ◽  
Sanghee Kim

This study aims to predict the compressive strength of concrete using a machine-learning algorithm with linear regression analysis and to evaluate its accuracy. The open-source software library TensorFlow was used to develop the machine-learning algorithm. In the machine-earning algorithm, a total of seven variables were set: water, cement, fly ash, blast furnace slag, sand, coarse aggregate, and coarse aggregate size. A total of 4297 concrete mixtures with measured compressive strengths were employed to train and testing the machine-learning algorithm. Of these, 70% were used for training, and 30% were utilized for verification. For verification, the research was conducted by classifying the mixtures into three cases: the case where the machine-learning algorithm was trained using all the data (Case-1), the case where the machine-learning algorithm was trained while maintaining the same number of training dataset for each strength range (Case-2), and the case where the machine-learning algorithm was trained after making the subcase of each strength range (Case-3). The results indicated that the error percentages of Case-1 and Case-2 did not differ significantly. The error percentage of Case-3 was far smaller than those of Case-1 and Case-2. Therefore, it was concluded that the range of training dataset of the concrete compressive strength is as important as the amount of training dataset for accurately predicting the concrete compressive strength using the machine-learning algorithm.


The purpose of empirical research study to know the impact of various HRD practices and its impact on predictor (job satisfaction). The structured survey research instrument was used to gather the data from 500 sample respondents. The questionnaire was validated with pilot study and data was with crone Bach’s alpha reliability test. The results of the outcome validated with R-Machine Learning Algorithm, multiple linear regression analysis with the help of train data and test data (30:70) ratio. Furthermore results reveals corrgram plot, matrix correlation plot and validation of data with validation match test among various HRD practices and it’s inter relationship. The analysis supported with various reviews which include both western and Indian reviews. The study can be generalized to any sector wherever HRD practices can be implemented. The study feasible/applicable to social implications and employee concern problems and related productivity. The study provides new insights to the readers and analysis which was not published by any other in the relevant topic related machine learning algorithm in analytics world.


2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


2020 ◽  
pp. 609-623
Author(s):  
Arun Kumar Beerala ◽  
Gobinath R. ◽  
Shyamala G. ◽  
Siribommala Manvitha

Water is the most valuable natural resource for all living things and the ecosystem. The quality of groundwater is changed due to change in ecosystem, industrialisation, and urbanisation, etc. In the study, 60 samples were taken and analysed for various physio-chemical parameters. The sampling locations were located using global positioning system (GPS) and were taken for two consecutive years for two different seasons, monsoon (Nov-Dec) and post-monsoon (Jan-Mar). In 2016-2017 and 2017-2018 pH, EC, and TDS were obtained in the field. Hardness and Chloride are determined using titration method. Nitrate and Sulphate were determined using Spectrophotometer. Machine learning techniques were used to train the data set and to predict the unknown values. The dominant elements of groundwater are as follows: Ca2, Mg2 for cation and Cl-, SO42, NO3− for anions. The regression value for the training data set was found to be 0.90596, and for the entire network, it was found to be 0.81729. The best performance was observed as 0.0022605 at epoch 223.


Author(s):  
Yanan Wang ◽  
Haoyu Niu ◽  
Tiebiao Zhao ◽  
Xiaozhong Liao ◽  
Lei Dong ◽  
...  

Abstract This paper has proposed a contactless voltage classification method for Lithium-ion batteries (LIBs). With a three-dimensional radio-frequency based sensor called Walabot, voltage data of LIBs can be collected in a contactless way. Then three machine learning algorithm, that is, principal component analysis (PCA), linear discriminant analysis (LDA), and stochastic gradient descent (SGD) classifiers, have been employed for data processing. Experiments and comparison have been conducted to verify the proposed method. The colormaps of results and prediction accuracy show that LDA may be most suitable for LIBs voltage classification.


Author(s):  
Kazuko Fuchi ◽  
Eric M. Wolf ◽  
David S. Makhija ◽  
Nathan A. Wukie ◽  
Christopher R. Schrock ◽  
...  

Abstract A machine learning algorithm that performs multifidelity domain decomposition is introduced. While the design of complex systems can be facilitated by numerical simulations, the determination of appropriate physics couplings and levels of model fidelity can be challenging. The proposed method automatically divides the computational domain into subregions and assigns required fidelity level, using a small number of high fidelity simulations to generate training data and low fidelity solutions as input data. Unsupervised and supervised machine learning algorithms are used to correlate features from low fidelity solutions to fidelity assignment. The effectiveness of the method is demonstrated in a problem of viscous fluid flow around a cylinder at Re ≈ 20. Ling et al. built physics-informed invariance and symmetry properties into machine learning models and demonstrated improved model generalizability. Along these lines, we avoid using problem dependent features such as coordinates of sample points, object geometry or flow conditions as explicit inputs to the machine learning model. Use of pointwise flow features generates large data sets from only one or two high fidelity simulations, and the fidelity predictor model achieved 99.5% accuracy at training points. The trained model was shown to be capable of predicting a fidelity map for a problem with an altered cylinder radius. A significant improvement in the prediction performance was seen when inputs are expanded to include multiscale features that incorporate neighborhood information.


Author(s):  
Xiaoming Li ◽  
Yan Sun ◽  
Qiang Zhang

In this paper, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization (vertical-horizontal, VH or horizontal-vertical, HV) data in extra wide (EW) swath mode based on the machine learning algorithm support vector machine (SVM). The classification basis includes the S1 radar backscatter coefficients and texture features that are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e. entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparison shows good agreement between the SAR-derived sea ice cover using the proposed method and a visual inspection, of which the accuracy reaches approximately 90% - 95% based on a few cases. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of extracted sea ice cover by using S1 data is more than 80%.


2018 ◽  
Author(s):  
Sergei Posysaev ◽  
Olga Miroshnichenko ◽  
Matti Alatalo ◽  
Duy Le ◽  
Talat S. Rahman

<p>A connection between the oxidation state (OS) and Bader charge has been missing so far. To our knowledge, all previous work tried to connect OS with Bader charges only with few compounds. The aim of this work was to find a dependency between OS and Bader charge, using <a>a large number of compounds from an open database</a>. We show that a <a>correlation indeed exists between OSs and Bader charges</a> using the simplest machine learning algorithm, linear regression. The applicability of determining OS by Bader charges in mixed-valence compounds and surfaces is considered.</p>


2021 ◽  
Vol 297 ◽  
pp. 01029
Author(s):  
Mohammed Azza ◽  
Jabran Daaif ◽  
Adnane Aouidate ◽  
El Hadi Chahid ◽  
Said Belaaouad

In this paper, we discuss the prediction of future solar cell photo-current generated by the machine learning algorithm. For the selection of prediction methods, we compared and explored different prediction methods. Precision, MSE and MAE were used as models due to its adaptable and probabilistic methodology on model selection. This study uses machine learning algorithms as a research method that develops models for predicting solar cell photo-current. We create an electric current prediction model. In view of the models of machine learning algorithms for example, linear regression, Lasso regression, K Nearest Neighbors, decision tree and random forest, watch their order precision execution. In this point, we recommend a solar cell photocurrent prediction model for better information based on resistance assessment. These reviews show that the linear regression algorithm, given the precision, reliably outperforms alternative models in performing the solar cell photo-current prediction Iph


Sign in / Sign up

Export Citation Format

Share Document