Investigation of the Flowfield in the Transonic VKI BRITE EURAM Turbine Stage With 3D Steady and Unsteady N-S Computations

Author(s):  
Björn Laumert ◽  
Hans Mårtensson ◽  
Torsten H. Fransson

This paper presents the results from three-dimensional (3D) steady and unsteady Navier-Stokes computations, performed on the transonic VKI BRITE EURAM test turbine stage. The work aimed at giving deeper insight in the aerodynamics of the turbine stage. The analysis has been carried out with the nominal stator trailing edge ejection slot geometry and cooling flow ejection. Additionally a simplified rounded stator trailing edge was employed. The results from the unsteady computations were compared with measured pressure perturbation traces at 22 locations around the rotor blade at midspan. Computations with both the ejection slot and the rounded stator trailing edge geometry were in good agreement with the measurements on the pressure side and half chord of the rotor blade’s suction side. Measurements and computations showed less good agreement downstream a weak shock on the suction side of the rotor blade. The measured pressure double peak in the rotor blade leading edge region is only observed in the computations with the ejection slot geometry.

Author(s):  
Carsten Weiß ◽  
Daniel R. Grates ◽  
Hans Thermann ◽  
Reinhard Niehuis

The objective of the presented work is to investigate the influence of the tip clearance on the wake formation inside a radial impeller. The position and size of the wake region does not only depend on the clearance height, but also on the distribution of the clearance gap along the blade chord. In order to examine this influence, several calculations have been performed with a three dimensional Navier-Stokes flow solver on a centrifugal impeller, which was experimentally investigated in much detail at Aachen University. The original clearance gap was 0.7 mm at the leading edge and 0.48 mm at the trailing edge. These values were independently varied in the computations, such that different distributions of clearance heights could be chosen. The wake position of the smallest clearance height at the leading and trailing edge was closest to the pressure side. The calculations show, that a relatively large clearance height at the leading edge combined with a small height at the trailing edge move the wake further to the suction side, which corresponds very well with the experimental results. Reasons for that behavior are discussed in the paper.


Author(s):  
Yan Shi ◽  
Jun Li ◽  
Zhenping Feng

In this paper, steady and unsteady flow simulations were performed to investigate the influence of rotor fillet on the performance of turbine stage, based on 3D compressible Navier-Stokes equations closed with the Spalart-Allmaras turbulence model. The profile of Aachen turbine was employed and the fillet modeled by two shape parameters was placed at the junctions between the rotor blade and the endwalls (at both tip and hub). Based on the comparisons of the efficiency and the flow rate of turbine stage among the cases with different fillet shapes, the roles of two shape parameters were evaluated. To understand the mechanism of the rotor fillet influence on the flow field, the aerodynamic load, secondary flow and loss were analyzed and compared between the cases with and without the rotor fillet. It is found that the fillet is capable of restraining the flow separation near the leading edge of the rotor blade while inducing the displacement of the flow from the endwalls towards the mid-span, which enhances the loss generated by the interaction between the secondary flow and the main stream. Consequently, associated with the distribution of the loss at the outlet of the turbine stage, the best clocking position near the endwalls for the downstream blade moves about 10%∼20% of rotor pitch in the direction of rotor rotation. Therefore, the shape of the fillet in the rotor blade should be especially controlled in the process of the rotor design and manufacture, even though it is a minor part in the turbomachine.


2017 ◽  
Vol 2017 ◽  
pp. 1-16
Author(s):  
Tzong-Hann Shieh

By tangential curvature of the stacking line of the profiles guide vanes can be designed, which have on both ends an obtuse angle between suction side and sidewall. This configuration, according to literature, is capable of reducing secondary loss. This type of vanes develops considerable radial components of the blade force and effects a displacement of the meridional flow towards both sidewalls. In this paper we work with a finite-volume-code for computations of the three-dimensional Reynolds averaged Navier-Stokes equations for an axial turbine stage with radial and two types of tangentially curved guide vanes. With computational results, mathematical formulations are developed for a new flow model of deflection of such blades that are formally compatible with the assumption of a rotation-symmetrical flow and with the existing throughflow codes, in order to predict the deflection angle over the blade height for the tangential leaned and curved blades.


1992 ◽  
Author(s):  
K. R. Kirtley ◽  
T. A. Beach ◽  
Cass Rogo

A numerical simulation of a transonic mixed flow turbine stage has been carried out using an average passage Navier-Stokes analysis. The mixed flow turbine stage considered here consists of a transonic nozzle vane and a highly loaded rotor. The simulation was run at the design pressure ratio and is assessed by comparing results with those of an established throughflow design system. The three-dimensional aerodynamic loads are studied as well as the development and migration of secondary flows and their contribution to the total pressure loss. The numerical results indicate that strong passage vortices develop in the nozzle vane, mix out quickly, and have little impact on the rotor flow. The rotor is highly loaded near the leading edge. Within the rotor passage, strong spanwise flows and other secondary flows exist along with the tip leakage vortex. The rotor exit loss distribution is similar in character to that found in radial inflow turbines. The secondary flows and non-uniform work extraction also tend to significantly redistribute a non-uniform inlet total temperature profile by the exit of the stage.


Author(s):  
J Larsson

A full Navier-Stokes solver is used to calculate external heat transfer in two linear two-dimensional turbine cascades, one subsonic and one transonic. Heat transfer results obtained with two low-Reynolds k-∊ models (Chien and Launder-Sharma) and two k-ω models (Wilcox standard and transition) are compared with measurements. Good agreement is found in some regions, but the suction side transition and the leading edge are not predicted correctly. Problems with turbulence levels that are too high in the leading edge region are investigated. The numerical quality of the results is investigated and a few general guidelines about the numerics are given. Grid and scheme independence is also demonstrated.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 40 ◽  
Author(s):  
Dajun Liu ◽  
Takafumi Nishino

A series of three-dimensional unsteady Reynolds-averaged Navier–Stokes (RANS) simulations are conducted to investigate the formation of stall cells over a pitching NACA 0012 aerofoil. Periodic boundary conditions are applied to the spanwise ends of the computational domain. Several different pitching ranges and frequencies are adopted. The influence of the pitching range and frequency on the lift coefficient (CL) hysteresis loop and the development of leading-edge vortex (LEV) agrees with earlier studies in the literature. Depending on pitching range and frequency, the flow structures on the suction side of the aerofoil can be categorized into three types: (i) strong oscillatory stall cells resembling what are often observed on a static aerofoil; (ii) weak stall cells which are smaller in size and less oscillatory; and (iii) no stall cells at all (i.e., flow remains two-dimensional) or only very weak oval-shaped structures that have little impact on CL. A clear difference in CL during the flow reattachment stage is observed between the cases with strong stall cells and with weak stall cells. For the cases with strong stall cells, arch-shaped flow structures are observed above the aerofoil. They resemble the Π-shaped vortices often observed over a pitching finite aspect ratio wing.


Author(s):  
Adel Ghenaiet

Modern gas turbines operate in severe dusty environments, and because of such harsh operating conditions, their blades experience significant degradation in service. This paper presents a numerical study of particle dynamics and erosion in an hp axial turbine stage. The flow field is solved separately from the solid phase and constitutes the necessary data in the particle trajectories simulations using a Lagrangian tracking model based on the finite element method. Several parameters consider a statistical description such as particle size, shape and rebound, in addition to the turbulence effect. A semi empirical erosion correlation is used to estimate erosion contours and blades deteriorations, knowing the locations and conditions of impacts. The trajectory and erosion results show high erosion rates over the pressure side of NGV near trailing edge, in addition to extreme erosion observed toward the root corner, due to high number of particles impacting with high velocities. On the suction side, erosion is mainly over a narrow strip from leading edge. Erosion in the rotor blade is shown along the leading edge and spreading over the fore of the blade suction side, owing to a flux of particles entering at high velocities and incidence. On the pressure side, regions of dense erosion are observed near the leading edge and trailing edge as well as the tip corner. Critical erosion spots seen over NGV and rotor blade are signs of a premature failure.


1993 ◽  
Vol 115 (3) ◽  
pp. 590-600 ◽  
Author(s):  
K. R. Kirtley ◽  
T. A. Beach ◽  
C. Rogo

A numerical simulation of a transonic mixed-flow turbine stage has been carried out using an average passage Navier–Stokes analysis. The mixed-flow turbine stage considered here consists of a transonic nozzle vane and a highly loaded rotor. The simulation was run at the design pressure ratio and is assessed by comparing results with those of an established throughflow design system. The three-dimensional aerodynamic loads are studied as well as the development and migration of secondary flows and their contribution to the total pressure loss. The numerical results indicate that strong passage vortices develop in the nozzle vane, mix out quickly, and have little impact on the rotor flow. The rotor is highly loaded near the leading edge. Within the rotor passage, strong spanwise flows and other secondary flows exist along with the tip leakage vortex. The rotor exit loss distribution is similar in character to that found in radial inflow turbines. The secondary flows and nonuniform work extraction also tend to redistribute a nonuniform inlet total temperature profile significantly by the exit of the stage.


Author(s):  
Xiying Niu ◽  
Lin Wang ◽  
Dongming Li ◽  
Qiuli Du

The flow in turbomachinery is inherently three-dimensional unsteady and turbulent. Unsteady factors due to the viscous wakes and potential effects of blades, affect the blade surface pressure distribution, which leads to blade vibrations by periodic pulsating flow forces. While the aerodynamic excitation frequency equals to the natural frequency of blades, critical blade vibrations are excited, which could lead to a reduction of lifetime or even a destruction of rotor blades. Although a large number of investigations about turbine unsteady flow fields and unsteady excitation forces have been carried out, these investigations do not focus on how to reduce the turbine blade unsteady forces. In this article, the turbine stators were redesigned by forward-swept and positive-leaned vanes, in order to reduce the blade excitation forces. And, the swept angles and leaned angles are determined respectively, that is, the vane is forward swept 3 degree, and positive leaned 13 degree, with the purpose of ensuring that while the hub exit flow of a vane aligns with the leading edge of one downstream rotor blade, the tip exit flow could align with the leading edge of another rotor blade that is adjacent to the above rotor blade pressure side. Comparative investigations into the turbine unsteady flow fields between the redesigned and original cases are performed by using a three-dimensional Navier-Stokes viscous solver. Emphasis is placed on how the vane modification reduces the turbine blade unsteady forces. The results indicate that the static pressure fluctuation at vane trailing edge region is reduced compared to the baseline, and high loss region inside vane passages is also reduced. Besides, blade-to-blade entropy distribution of the turbine stage shows that, the vane wake width is reduced by its shape modification, especially at 5% and 95% span. Due to these, the temporal-spatial profile of rotor blade static pressure coefficient shows that, the unsteady fluctuation of rotor blade becomes weak obviously for the redesigned case. Overall, compared to the baseline, on the condition that the mass flowrate and expansion ratio are nearly the same, the torque fluctuation is reduced from 12.78% to 6.92%, and the axial force fluctuation is reduced from 8.82% to 6.51%, which not only is good for reducing the stream exciting force, but also can make the output power more stable. And, the turbine stage time-averaged efficiency increases slightly by 0.18%. Detailed results about static pressure coefficient distributions, entropy distributions, torque and axial forces are presented and discussed in the paper.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


Sign in / Sign up

Export Citation Format

Share Document