scholarly journals Design and Development of a New 11,000 HP Industrial Gas Turbine

Author(s):  
R. C. Petitt

This paper describes the design and development of a new series 3000 two-shaft regenerative and simple cycle gas turbine for mechanical drive applications. Technical advances in the areas of aero-thermal, mechanical, controls, and materials design were combined to produce a machine with a regenerative cycle thermal efficiency of 32%. Increased automation and adaptability to remote control were provided by a new solid state control system and high pressure hydraulics.

1979 ◽  
Author(s):  
P. M. Andronowski

This paper describes the newly introduced Ruston TA2500 gas turbine. The design is based on that of the well proven TA1750 and retains its outstanding features of reliability, long life, and ease of maintenance. Component efficiencies have been improved to increase the overall thermal performance and the Ruston designed solid-state control system with its Rustronic solid-state governor has been incorporated to give greater operating flexibility. Other changes include a compressor driven auxiliary gearbox which obviates the necessity for motor driven auxiliary pumps and a new design of frame similar to that of the Ruston TB5000 gas turbine.


Author(s):  
F. Carchedi ◽  
G. R. Wood

This paper describes the design and development of a 15-stage axial flow compressor for a −6MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low speed surge line and the effects of the stagger changes are discussed.


1966 ◽  
Vol 88 (2) ◽  
pp. 117-126 ◽  
Author(s):  
D. Quan

The Orenda OT-4 is a gas turbine which uses a simple regenerative cycle and is being developed as a multipurpose, continuous or emergency unit which will be competitive with the diesel engine and will retain the inherent advantages of the gas turbine. This development program is now in its fourth year. The design and development philosophies used in this engine are discussed briefly. The problems still facing the engine are indicated. Some of the experience and lessons learned from this program are discussed.


1997 ◽  
Vol 119 (3) ◽  
pp. 506-511 ◽  
Author(s):  
I. Yuri ◽  
T. Hisamatsu ◽  
K. Watanabe ◽  
Y. Etori

A ceramic combustor for a 1500°C, 20 MW class industrial gas turbine was developed and tested. This combustor has a hybrid ceramic/metal structure. To improve the durability of the combustor, the ceramic parts were made of silicon carbide (SiC), which has excellent oxidation resistance under high-temperature conditions as compared to silicon nitride (Si3N4), although the fracture toughness of SiC is lower than that of Si3N4. Structural improvements to allow the use of materials with low fracture toughness were made to the fastening structure of the ceramic parts. Also, the combustion design of the combustor was improved. Combustor tests using low-Btu gaseous fuel of a composition that simulated coal gas were carried out under high pressure. The test results demonstrated that the structural improvements were effective because the ceramic parts exhibited no damage even in the fuel cutoff tests from rated load conditions. It also indicated that the combustion efficiency was almost 100 percent even under part-load conditions.


Author(s):  
G. McQuiggan

This paper describes the design and development of the CW182 two shaft variable geometry industrial gas turbine. This gas turbine is a scaled down version of the existing CW352 gas turbine. The methods used to scale the gas turbine are explained together with a detailed description of those areas that were not scaled but were completely redesigned. In addition, details of the testing carried out on the new design components are described.


Author(s):  
Arne Loft

This paper gives a brief summary of the experience of the first industrial gas turbine ship, the John Sergeant, then enumerates the basic characteristics of the heavy duty gas turbine and the philosophy employed in the design. The unique features of the second-stage variable area turbine nozzle, its effects on performance, and particularly the flexible control it affords in conjunction with the controllable and reversible pitch propeller, are discussed. The philosophy of design of the solid state control, protection and sequential systems are outlined, as are the experiences to date with a number of industrial gas turbines of the two-shaft, off-shore and heavy fuel varieties. It concludes by discussing some of the considerations for burning residual fuel and boil-off from liquefied natural gas.


1982 ◽  
Vol 104 (4) ◽  
pp. 823-831 ◽  
Author(s):  
F. Carchedi ◽  
G. R. Wood

The paper describes the design and development of a 15 stage axial flow compressor for a 6-MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low-speed surge line and the effects of the stagger changes are discussed.


Author(s):  
J. Korta

The CW352 two shaft industrial type gas turbine was first put in commercial service in 1979. By mid 1985 units in simple cycle and regenerative modes have accumulated in excess of 200,000 hrs. of operation, with lead units in excess of 50,000 hrs. simple cycle mode and 35,000 hrs. in regenerative cycle mode. The paper discusses the operational experience with emphasis on early field problems and their solutions.


Author(s):  
L. H. Cowell ◽  
R. T. LeCren ◽  
C. E. Tenbrook

A full size combustor for a coal-fueled industrial gas turbine engine has been designed and fabricated. The design is based on extensive work completed through one-tenth scale combustion tests. Testing of the combustion hardware will be completed with a high pressure air supply in a combustion test facility before the components are integrated with the gas turbine engine. The combustor is a two-staged, rich-lean design. Fuel and air are introduced in the primary combustion zone where the combustion process is initiated. The primary zone operates in a slagging mode inertially removing coal ash from the gas stream. Four injectors designed for coal-water mixture (CWM) atomization are used to introduce the fuel and primary air. In the secondary combustion zone additional air is injected to complete the combustion process at fuel lean conditions. The secondary zone also serves to reduce the gas temperatures exiting the combustor. Between the primary and secondary zones is a Particulate Rejection Impact Separator (PRIS). In this device much of the coal ash that passes from the primary zone is inertially separated from the gas stream. The two-staged combustor along with the PRIS have been designated as the combustor island. All of the combustor island components are refractory lined to minimize heat loss. Fabrication of the combustor has been completed. The PRIS is still under construction. The combustor hardware is being installed at the Caterpillar Technical Center for high pressure test evaluation. The design, test installation, and test plan of the full size combustor island are discussed.


Sign in / Sign up

Export Citation Format

Share Document