Power Recovery From Gas Turbines: A Review of the Limitations, and an Evaluation of the Use of “Organic” Working Fluids

1970 ◽  
Author(s):  
Stephen Luchter

Gas-turbine waste heat appears to be a valuable source of energy, yet the number of installations in which this energy is utilized is minimal. The reasons for this are reviewed and a typical nonafterburning cycle is examined for both steam and an “organic” working fluid. The power level range over which each is attractive is obtained, and the costs of each are compared on a relative basis.

1979 ◽  
Author(s):  
W. F. Malewski ◽  
G. M. Holldorff

Combined cycles for pipeline-booster stations using waste heat from gas turbines exhaust can improve the overall efficiency of such stations remarkably. Several working fluids are suitable. Due to existing criteria for selecting a working medium under mentioned conditions, water, ammonia, propane and butane can be considered as practical working fluids. The investigations have shown that: (a) ammonia is advantageous at low exhaust gas and ambient temperatures, (b) water is most effective at high exhaust gas and ambient temperatures, and (c), additionally, hydrocarbons are suitable in a medium range for exhaust gas and condensing temperatures. Not only thermodynamic but also operational features have to be considered. There is not one optimum working fluid but a best one suitable according to the prevailing site conditions.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1499 ◽  
Author(s):  
Dominika Matuszewska ◽  
Piotr Olczak

Power conversion systems based on the Organic Rankine Cycle (ORC) have been identified as a potential technology especially in converting low-grade renewable sources or waste heat. However, it is necessary to improve efficiency of ORC systems. This paper focuses on use of low geothermal resources (for temperature range of 80–128 °C and mass flow 100 kg/s) by using modified ORC. A modification of conventional binary power plant is conducted by combining gas turbines to increase quality of steam from a geothermal well. An analysis has been conducted for three different working fluids: R245fa, R1233zd(E) and R600. The paper discusses the impact of parameter changes not only on system efficiency but on other performance indicators. The results were compared with a conventional geothermal Organic Rankine Cycle (ORC). Increasing of geothermal steam quality by supplying exhaust gas from a gas turbine to the installation has a positive effect on the system efficiency and power. The highest efficiency of the modified ORC system has been obtained for R1233zd(E) as a working fluid and it reaches values from 12.21% to 19.20% (depending on the temperature of the geothermal brine). In comparison, an ORC system without gas turbine support reaches values from 9.43% to 17.54%.


1973 ◽  
Vol 95 (2) ◽  
pp. 75-83 ◽  
Author(s):  
G. Angelino ◽  
V. Moroni

Organic compounds, employed as working fluids for low temperature heat recovery, are shown to exhibit a performance better than that of steam cycles. The potential influence on efficiency and specific work of organic fluid power recovery applied to existing open cycle gas turbine, diesel and gas engines is illustrated on the base of a statistical documentation. The basic characteristics of a typical combined cycle layout are analyzed with respect to fuel economy, air consumption and heat exchange surface requirements. The possibility of improving the performance of closed cycle (helium) gas turbines by means of an organic fluid heat recovery cycle is then examined. The potential benefits deriving from the use of the power turbine of the organic fluid cycle as a direct driver for the compressor of a refrigerating cycle or heat pump employing the same working fluid are discussed. The basic results of a test program aiming to determine the decomposition rates and the corrosion characteristics of some organic working media are presented.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

One major challenge to the accurate development of performance simulation tool for component-based nuclear power plant engine models is the difficulty in accessing component performance maps; hence, researchers or engineers often rely on estimation approach using various scaling techniques. This paper describes a multi-fluid scaling approach used to determine the component characteristics of a closed-cycle gas turbine plant from an existing component map with their design data, which can be applied for different working fluids as may be required in closed-cycle gas turbine operations to adapt data from one component map into a new component map. Each component operation is defined by an appropriate change of state equations which describes its thermodynamic behavior, thus, a consideration of the working fluid properties is of high relevance to the scaling approach. The multi-fluid scaling technique described in this paper was used to develop a computer simulation tool called GT-ACYSS, which can be valuable for analyzing the performance of closed-cycle gas turbine operations with different working fluids. This approach makes it easy to theoretically scale existing map using similar or different working fluids without carrying out a full experimental test or repeating the whole design and development process. The results of selected case studies show a reasonable agreement with available data.


2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


Author(s):  
Leonardo Pierobon ◽  
Rambabu Kandepu ◽  
Fredrik Haglind

With increasing incentives for reducing the CO2 emissions offshore, optimization of energy usage on offshore platforms has become a focus area. Most of offshore oil and gas platforms use gas turbines to support the electrical demand on the platform. It is common to operate a gas turbine mostly under part-load conditions most of the time in order to accommodate any short term peak loads. Gas turbines with flexibility with respect to fuel type, resulting in low turbine inlet and exhaust gas temperatures, are often employed. The typical gas turbine efficiency for an offshore application might vary in the range 20–30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized. In present paper, a review of the technologies available for waste heat recovery offshore is made. Further, the challenges of implementing these technologies on offshore platforms are discussed from a practical point of view. Performance estimations are made for a number of combined cycles consisting of a gas turbine typically used offshore and organic Rankine cycles employing different working fluids; an optimal media is then suggested based on efficiency, weight and space considerations. The paper concludes with suggestions for further research within the field of waste heat recovery for offshore applications.


Author(s):  
Geoffrey D. Woodhouse

The gas turbine engine has been examined as a power plant for military tracked vehicles for over 30 years. Advocates have stressed the potentially high power density and high reliability as factors in favor of the turbine. Several turbine engines have been evaluated experimentally in military tracked vehicles resulting in a better understanding of such aspects as response characteristics and air inlet filtration requirements. Moreover, although the small volume and light weight of aircraft derivative gas turbines have certain virtues, it generally has been concluded that some form of waste heat recuperation is essential to achieve an acceptable level of fuel consumption, despite the increased weight and volume incurred. The selection of the AVCO Lycoming AGT1500 recuperated gas turbine as the power unit for the U.S. Army new M1 “Abrams” main battle tank was a major milestone in the evolution of gas turbine engines for tank propulsion.


Author(s):  
C. F. McDonald ◽  
R. G. Adams ◽  
F. R. Bell ◽  
P. Fortescue

The gas turbine high-temperature gas-cooled reactor (HTGR) power plant combines the existing design HTGR core with a closed-cycle helium gas turbine power conversion system directly in the reactor primary circuit. The high density helium working fluid results in a very compact power conversion system. While the geometries of the helium turbomachinery, heat exchangers, and internal gas flow paths differ from air breathing gas turbines because of the nature of the working fluid and the high degree of pressurization, many of the aerodynamic, heat transfer and dynamic analytical procedures used in the design are identical to conventional open-cycle industrial gas turbine practice. This paper outlines some of the preliminary design considerations for the rotating machinery, heat exchangers, and other major primary system components for an integrated type of plant embodying multiple gas turbine loops. The high potential for further improvement in plant efficiency and capacity, for both advanced dry-cooled and waste heat power cycle versions of the direct-cycle nuclear gas turbine, is also discussed.


Sign in / Sign up

Export Citation Format

Share Document