scholarly journals The Dynamics of Suspended Solid Particles in a Two Stage Gas Turbine

1986 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed

Gas turbine engines operating in dusty environments are exposed to erosion and performance deterioration. In order to provide the basis for calculating the erosion and performance deterioration of turbines using pulverized coal, an investigation is undertaken to determine the three dimensional particle trajectories in a two stage turbine. The solution takes into account the influence of the variation in the three dimensional flow field. The change in particle momentum due to their collision with the turbine blades and casings is modeled using empirical equations derived from experimental Laser Doppler Velocimetry (LDV) measurements. The results show the three dimensional trajectory characteristics of the solid particles relative to the turbine blades. The results also show that the particle distribution in the flow field are determined by particle-blade impacts. The results obtained from this study indicate the turbine blade locations which are subjected to more blade impacts and hence more erosion damage.

1986 ◽  
Vol 108 (2) ◽  
pp. 298-302 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed

Gas turbine engines operating in dusty environments are exposed to erosion and performance deterioration. In order to provide the basis for calculating the erosion and performance deterioration of turbines using pulverized coal, an investigation is undertaken to determine the three-dimensional particle trajectories in a two-stage turbine. The solution takes into account the influence of variation in the three-dimensional flow field. The change in particle momentum due to their collision with the turbine blades and casings is modeled using empirical equations derived from experimental laser-Doppler velocimetry (LDV) measurements. The results show the three-dimensional trajectory characteristics of the solid particles relative to the turbine blades. The results also show that the particle distributions in the flow field are determined by particle–blade impacts. The results obtained from this study indicate the turbine blade locations which are subjected to more blade impacts and hence more erosion damage.


Author(s):  
W. Tabakoff

Turbines and compressors operating in polluted atmosphere with solid particles are subjected to performance deterioration. This paper presents an investigation carried out on two-stage gas turbine with blunt leading edge blades and on a single-stage axial flow compressor to study the effects of particulates and erosion on performance deterioration.


Author(s):  
Veeraraghava R Hasti ◽  
Prithwish Kundu ◽  
Sibendu Som ◽  
Jay P Gore

The turbulent flow field in a practical gas turbine combustor is very complex because of the interactions between various flows resulting from components like multiple types of swirlers, dilution holes, and liner effusion cooling holes. Numerical simulations of flows in such complex combustor configurations are challenging. The challenges result from (a) the complexities of the interfaces between multiple three-dimensional shear layers, (b) the need for proper treatment of a large number of tiny effusion holes with multiple angles, and (c) the requirements for fast turnaround times in support of engineering design optimization. Both the Reynolds averaged Navier–Stokes simulation (RANS) and the large eddy simulation (LES) for the practical combustor geometry are considered. An autonomous meshing using the cut-cell Cartesian method and adaptive mesh refinement (AMR) is demonstrated for the first time to simulate the flow in a practical combustor geometry. The numerical studies include a set of computations of flows under a prescribed pressure drop across the passage of interest and another set of computations with all passages open with a specified total flow rate at the plenum inlet and the pressure at the exit. For both sets, the results of the RANS and the LES flow computations agree with each other and with the corresponding measurements. The results from the high-resolution LES simulations are utilized to gain fundamental insights into the complex turbulent flow field by examining the profiles of the velocity, the vorticity, and the turbulent kinetic energy. The dynamics of the turbulent structures are well captured in the results of the LES simulations.


Author(s):  
Vincenzo Dossena ◽  
Antonio Perdichizzi ◽  
Marco Savini

The paper presents the results of a detailed investigation of the flow field in a gas turbine linear cascade. A comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the three-dimensional flow field are here analyzed and discussed. The flow evolution downstream of the trailing edge was surveyed by means of probe traversing while a 3-D Navier-Stokes solver was employed to obtain information on flow structures inside the vaned passages. The experimental measurements and the numerical simulation of the three-dimensional flow field has been performed for two cascades; one with planar endwalls, and the other with one planar and one profiled endwall, so as to present a reduction of the nozzle height. The investigation was carried out at an isentropic downstream Mach number of 0.6. Airfoils of both cascades were scaled from the same high pressure gas turbine inlet guide vane. Measurements of the three-dimensional flow field have been performed on five planes downstream of the cascades by means of a miniaturized five-hole pressure probe. The presence of endwall contouring strongly influences the secondary effects; the vortex generation and their development is inhibited by the stronger acceleration taking place throughout the cascade. The results show that the secondary effects on the contoured side of the passage are confined in the endwall region, while on the flat side the secondary vortices display characteristics similar to the ones occurring downstream of the planar cascade. The spanwise outlet angle distribution presents a linear variation for most of the nozzle height, with quite low values approaching the contoured endwall. The analysis of mass averaged losses shows a significant performance improvement in the contoured cascade. This has to be ascribed not only to lower secondary losses but also to a reduction of the profile losses.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 768-778
Author(s):  
Wei Ba ◽  
Ziyuan Wang ◽  
Xuesong Li ◽  
Chunwei Gu

Abstract Cooling technology is widely applied in modern turbines to protect the turbine blades, and extracting high-pressure cooling air from a compressor exerts a remarkable influence on the gas-turbine performance. However, the three-dimensional optimal design of a turbine in modern industrial practice is usually carried out by pursuing high component efficiency without considering possible changes in coolant requirement; hence, it may not exactly lead to improvement in the gas-turbine cycle efficiency. In this study, the turbine stator was twisted and leaned to achieve higher comprehensive efficiency, which is the cycle-based efficiency definition for a cooled turbine that considers both turbine aerodynamic performance and coolant requirement. First, the influence of twist and compound lean on turbine aerodynamic performance, considering stator-hub leakage, was investigated. Then, a method to predict the coolant requirement for turbines with different stator designs was applied, to evaluate coolant-requirement change at the design condition. The optimized turbines were finally compared to demonstrate the necessity of considering the coolant-requirement change in the optimal design. This indicated that proper twisting to open the throat area in the stator hub and compound lean to the pressure surface side could help improve the cooled-turbine comprehensive efficiency.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


Author(s):  
Axel Widenhorn ◽  
Berthold Noll ◽  
Manfred Aigner

In this contribution the three-dimensional reacting turbulent flow field of a swirl-stabilized gas turbine model combustor is analyzed numerically. The investigated partially premixed and lifted CH4/air flame has a thermal power load of Pth = 35kW and a global equivalence ratio of φ = 0.65. To study the reacting flow field the Scale Adaptive Simulation (SAS) turbulence model in combination with the Eddy Dissipation/Finite Rate Chemistry combustion model was applied. The simulations were performed using the commercial CFD software package ANSYS CFX-11.0. The numerically achieved time-averaged values of the velocity components and their appropriate turbulent fluctuations (RMS) are in very good agreement with the experimental values (LDA). The same excellent results were found for other flow quantities like temperature and mixture fraction. Here, the corresponding time-averaged and the appropriate RMS profiles are compared to Raman measurements. Furthermore the instantaneous flow features are discussed. In accordance with the experiment the numerical simulation evidences the existence of a precessing vortex core (PVC). The PVC rotates with a frequency of 1596Hz. Moreover it is shown that in the upper part of the combustion chamber a tornado-like vortical structure is established.


2013 ◽  
Vol 17 (5) ◽  
pp. 1504-1507 ◽  
Author(s):  
Zhi-Fei Li ◽  
Zheng Du ◽  
Kai Zhang ◽  
Dong-Sheng Li ◽  
Zhong-Di Su ◽  
...  

Three-dimensional computational model for a gas turbine flowmeter is proposed, and the finite volume based SIMPLEC method and k-? turbulence model are used to obtain the detailed information of flow field in turbine flowmeter, such as velocity and pressure distribution. Comparison between numerical results and experimental data reveals a good agreement. A rectifier with little pressure loss is optimally designed and validated numerically and experimentally.


1987 ◽  
Vol 109 (3) ◽  
pp. 297-306 ◽  
Author(s):  
W. Tabakoff

Aircraft engines operating in areas where the atmosphere is polluted by small solid particles are typical examples of jet engines operating under hostile atmospheric environment. The particles may be different kinds of sand, volcanic ashes or others. Under these conditions, the gas and particles experience different degrees of turning as they flow through the engine. This is mainly due to the difference in their inertia. This paper presents the results of an investigation of the solid particle dynamics through a helicopter engine with inlet particle separator. The particle trajectories are computed in the inlet separator which is characterized by considerable hub and tip contouring and radial variation in the swirling vane shape. The nonseparated particle trajectories are determined through the deswirling vanes and the five stage axial flow compressor. The results from this study include the frequency of particle impacts and the erosion distribution on the blade surfaces.


Sign in / Sign up

Export Citation Format

Share Document