scholarly journals Compressible, Turbulent, Viscous Flow Computations for Blade Aerodynamic and Heat Transfer

Author(s):  
A. A. Boretti

The paper presents a computer code for steady and unsteady, three-dimensional, compressible, turbulent, viscous flow simulations. The mathematical model is based on the Favre-averaged Navier-Stokes conservation equations, closed by a statistical model of turbulence. Turbulence effects are represented by using a low Reynolds number K-ω model. The numerical model makes use of a finite difference approximation in generalized coordinates for space discretization. The solution of time-dependent, three-dimensional, non-homogeneous, partial differential equations is obtained by solving, in a prescribed, symmetric pattern, three time-dependent, one-dimensional, homogeneous partial differential equations, representing convection and diffusion along each generalized coordinate direction, and one ordinary differential equation, representing generation and destruction. An explicit, multi-step, dissipative, Runge-Kutta scheme is finally adopted for time discretization. The code is applied to simulate the flow through a linear cascade of turbine rotor blades, where detailed experimental data are available. Blade aerodynamic and heat transfer are computed, at variable Reynolds and Mach numbers and turbulence levels, and compared with experimental data. While the aerodynamic prediction is relatively unaffected by the properties of both mathematical and numerical models, the heat transfer prediction proves to be extremely sensitive to models details. Low Reynolds number K-ω turbulence models theoretically reproduce laminar, turbulent and transitional boundary layers. However, their practical use in a Navier-Stokes code does not allow to entirely capture the effects of turbulence intensity and Mach and Reynolds numbers on blade heat transfer.

2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2483-2492 ◽  
Author(s):  
Khalid Mahmood ◽  
Muhammad Sajid ◽  
Nasir Ali ◽  
Tariq Javed

In this paper time-dependent, 2-D, axisymmetric flow and heat transfer of a viscous incompressible fluid impinging orthogonally on a disc is examined. The disc is lubricated with a thin layer of power-law fluid of variable thickness. It is assumed that surface temperature of the disc is time-dependent. Continuity of velocity and shear stress at the interface layer between the fluid and the lubricant has been imposed to obtain the solution of the governing partial differential equations. The set of partial differential equations is reduced into ordinary differential equations by suitable transformations and are solved numerically by using Keller-Box method. Solutions are presented in the form of graphs and tables in order to examine the influence of pertinent parameters on the flow and heat transfer characteristics. An increase in lubrication results in the reduction of surface shear stress and consequently viscous boundary layer becomes thin. However, the thermal boundary layer thickness increases by increasing lubrication. It is further observed that surface shear stress and heat transfer rate at the wall enhance due to unsteadiness. The results for the steady case are deduced from the present solutions and are found in good agreement with the existing results in the literature.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1950 ◽  
Vol 17 (4) ◽  
pp. 377-380
Author(s):  
R. D. Mindlin ◽  
L. E. Goodman

Abstract A procedure is described for extending the method of separation of variables to the solution of beam-vibration problems with time-dependent boundary conditions. The procedure is applicable to a wide variety of time-dependent boundary-value problems in systems governed by linear partial differential equations.


2019 ◽  
Vol 4 (1) ◽  
pp. 149-155
Author(s):  
Kholmatzhon Imomnazarov ◽  
Ravshanbek Yusupov ◽  
Ilham Iskandarov

This paper studies a class of partial differential equations of second order , with arbitrary functions and , with the help of the group classification. The main Lie algebra of infinitely infinitesimal symmetries is three-dimensional. We use the method of preliminary group classification for obtaining the classifications of these equations for a one-dimensional extension of the main Lie algebra.


Sign in / Sign up

Export Citation Format

Share Document