scholarly journals Gas Turbine Cycle Design Methodology: A Comparison of Parameter Variation With Numerical Optimization

Author(s):  
Joachim Kurzke

In gas turbine performance simulations often the question arises: What is the best thermodynamic cycle design point? This is an optimization task which can be attacked in two ways: One can do a series of parameter variations and pick from the resulting graphs the best solution or one can employ numerical optimization algorithms that produce a single cycle which fulfills all constraints. The conventional parameter study builds strongly on the engineering judgement and gives useful information over a range of parameter selections. However, when values for more than a few variables have to be determined while several constraints are existing, then numerical optimization routines can help to find the mathematical optimum faster and more accurately. Sometimes even an outstanding solution is found which was overlooked while doing a preliminary parameter study. For any simulation task a sophisticated graphical user interface is of great benefit. This is especially true for automated numerical optimizations. It is quite helpful to see on the screen of a PC how the variables are changing and which constraints are limiting the design. A quick and clear graphical representation of trade studies is also of great advantage. The paper describes how numerical optimization and parameter studies are implemented in a Windows-based PC program. As an example, the cycle selection of a derivative turbofan engine with a given core shows the merits of numerical optimization. The parameter variation is best suited for presenting the sensitivity of the result in the neighborhood of the optimum cycle design point.

1999 ◽  
Vol 121 (1) ◽  
pp. 6-11 ◽  
Author(s):  
J. Kurzke

In gas turbine performance simulations often the following question arises: what is the best thermodynamic cycle design point? This is an optimization task which can be attacked in two ways. One can do a series of parameter variations and pick from the resulting graphs the best solution or one can employ numerical optimization algorithms that produce a single cycle that fulfills all constraints. The conventional parameter study builds strongly on the engineering judgement and gives useful information over a range of parameter selections. However, when values for more than a few variables have to be determined while several constraints are existing, then numerical optimization routines can help to find the mathematical optimum faster and more accurately. Sometimes even an outstanding solution is found which was overlooked while doing a preliminary parameter study. For any simulation task a sophisticated graphical user interface is of great benefit. This is especially true for automated numerical optimizations. It is quite helpful to see on the screen of a PC how the variables are changing and which constraints are limiting the design. A quick and clear graphical representation of trade studies is also of great advantage. The paper describes how numerical optimization and parameter studies are implemented in a Windows-based PC program. As an example, the cycle selection of a derivative turbofan engine with a given core shows the merits of numerical optimization. The parameter variation is best suited for presenting the sensitivity of the result in the neighborhood of the optimum cycle design point.


Author(s):  
G. K. Conkol ◽  
T. Singh

As vehicles evolve through the concept phase, a wide variety of engines are usually considered. For long-life vehicles such as heavy armored tracked vehicles, gas turbines have been favored because of their weight and volume characteristics at high hp levels (1500 to 2000 hp). Many existing gas turbine engines, however, are undesirable for vehicular use because their original design philosophy was aircraft oriented. In a ground vehicle, mass flow and expense are only two areas in which these engines differ greatly. Because the designer generally is not given the freedom to design an engine from scratch, he must evaluate modifications of the basic Brayton cycle. In this study, various cycles are evaluated by using a design point program in order to optimize design parameters and to recommend a cycle for heavy vehicular use.


2019 ◽  
Vol 11 (2) ◽  
pp. 554 ◽  
Author(s):  
Krzysztof Kosowski ◽  
Karol Tucki ◽  
Marian Piwowarski ◽  
Robert Stępień ◽  
Olga Orynycz ◽  
...  

An analysis was carried out for different thermodynamic cycles of power plants with air turbines. Variants with regeneration and different cogeneration systems were considered. In the paper, we propose a new modification of a gas turbine cycle with the combustion chamber at the turbine outlet. A special air by-pass system of the combustor was applied and, in this way, the efficiency of the turbine cycle was increased by a few points. The proposed cycle equipped with a regenerator can provide higher efficiency than a classical gas turbine cycle with a regenerator. The best arrangements of combined air–steam cycles achieved very high values for overall cycle efficiency—that is, higher than 60%. An increase in efficiency to such degree would decrease fuel consumption, contribute to the mitigation of carbon dioxide emissions, and strengthen the sustainability of the region served by the power plant. This increase in efficiency might also contribute to the economic resilience of the area.


1999 ◽  
Vol 121 (4) ◽  
pp. 649-655 ◽  
Author(s):  
T. Korakianitis ◽  
K. Svensson

The design-point performance of various gas turbine cycles such as simple, regenerative, and intercooled-regenerative, is well understood. It is also understood that more elaborate shaft arrangements such as one, two, or three concentric or nonconcentric shafts, and a separate power turbine shaft, provide better starting and operational flexibility, and wider plateaus of high off-design performance. However, the types of different off-design performance one can obtain with these different shaft arrangements has not been previously reported. In this paper we use a computer program to investigate the design-point and off-design-point performance of engines with the following: one single shaft joining the compressor, turbine and load; one shaft joining compressor and turbine, and one shaft for the power turbine; two shafts for compressor and turbine, and one shaft for the power turbine; and three shafts joining the compressor and turbine, and one shaft for the power turbine. This is done by specifying typical compressor and turbine maps, and computing various aspects of off-design performance. The advantages and disadvantages of the various arrangements are investigated and discussed.


Author(s):  
T. Korakianitis ◽  
K. Svensson

The design-point performance of various gas turbine cycles such as simple, regenerative, and intercooled-regenerative, is well understood. It is also understood that more-elaborate shaft arrangements such as one, two or three concentric or non-concentric shafts, and a separate power turbine shaft, provide better starting and operational flexibility, and wider plateaus of high off-design performance. However, the types of different off-design performance one can obtain with these different shaft arrangements has not been previously reported. In this paper we use a computer program to investigate the design-point and off-design-point performance of engines with: one single shaft joining the compressor, turbine and load; one shaft joining compressor and turbine, and one shaft for the power turbine; two shafts for compressor and turbine, and one shaft for the power turbine; and three shafts joining the compressor and turbine, and one shaft for the power turbine. This is done by specifying typical compressor and turbine maps, and computing various aspects of off-design performance. The advantages and disadvantages of the various arrangements ore investigated and discussed.


2019 ◽  
Vol 11 (9) ◽  
pp. 2647 ◽  
Author(s):  
Krzysztof Kosowski ◽  
Karol Tucki ◽  
Marian Piwowarski ◽  
Robert Stępień ◽  
Olga Orynycz ◽  
...  

An analysis was carried out for different thermodynamic cycles of power plants with air turbines. A new modification of a gas turbine cycle with the combustion chamber at the turbine outlet has been described in the paper. A special air by-pass system of the combustor was applied, and in this way, the efficiency of the turbine cycle was increased by a few points. The proposed cycle equipped with an effective heat exchanger could have an efficiency higher than a classical gas turbine cycle with a regenerator. Appropriate cycle and turbine calculations were performed for micro power plants with turbine output in the range of 10–50 kW. The best arrangements achieved very high values of overall cycle efficiency, 35%–39%. Such turbines could also work in cogeneration and trigeneration arrangements, using various fuels such as liquids, gaseous fuels, wastes, coal, or biogas. Innovative technology in connection with ecology and the failure-free operation of the power plant strongly suggests the application of such devices at relatively small generating units (e.g., “prosumers” such as home farms and individual enterprises), assuring their independence from the main energy providers. Such solutions are in agreement with the politics of sustainable development.


Author(s):  
Esteban A. Valencia ◽  
Victor Hidalgo ◽  
Laskaridis Panagiotis ◽  
Devaiah Nalianda ◽  
Riti Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document