Decay of Turbulence in a Duct With Transverse Magnetic Field

Author(s):  
Oleg Zikanov ◽  
Dmitry Krasnov ◽  
Thomas Boeck ◽  
Semion Sukoriansky

Abstract Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via high-resolution direct numerical simulations. The simulations follow the revealing experimental study [1], in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.

2019 ◽  
Vol 867 ◽  
pp. 661-690 ◽  
Author(s):  
Oleg Zikanov ◽  
Dmitry Krasnov ◽  
Thomas Boeck ◽  
Semion Sukoriansky

Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky et al. (Exp. Fluids, vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.


1971 ◽  
Vol 47 (4) ◽  
pp. 737-764 ◽  
Author(s):  
R. A. Gardner ◽  
P. S. Lykoudis

An experimental investigation was conducted in a circular pipe to examine the influence of a transverse magnetic field on the structure of turbulent shear flow of a conducting fluid (mercury). In the present paper, part 1, mean velocity profiles, turbulence intensity profiles, velocity fluctuation spectra, axial pressure drop profiles, and skin friction data are presented which quantitatively exhibit the Hartmann effect and damping of the velocity fluctuations over a broad range of Reynolds numbers and magnetic fields. The results of heat transfer experiments will be reported by the authors in the following paper, part 2.


1971 ◽  
Vol 48 (1) ◽  
pp. 129-141 ◽  
Author(s):  
R. A. Gardner ◽  
P. S. Lykoudis

The present paper, part 2, consists of an experimental investigation of the influence of a transverse magnetic field on the heat transfer of a conducting fluid (mercury) flowing in an electrically insulated pipe subjected to a uniform heat flux at the wall. Mean temperature profiles and heat transfer data are presented which demonstrate that the magnetic field inhibits the convective mechanism of heat transfer through its damping of the turbulent velocity fluctuations.


2019 ◽  
Vol 49 (2) ◽  
pp. 181-186
Author(s):  
Yu P Zakharov ◽  
A G Ponomarenko ◽  
V A Terekhin ◽  
V G Posukh ◽  
I F Shaikhislamov ◽  
...  

2013 ◽  
Vol 720 ◽  
pp. 486-516 ◽  
Author(s):  
Oleg Zikanov ◽  
Yaroslav I. Listratov ◽  
Valentin G. Sviridov

AbstractLinear stability analysis and direct numerical simulations are conducted to analyse mixed convection in a liquid metal flow in a horizontal pipe with imposed transverse magnetic field. The pipe walls are electrically insulated and subject to constant flux heating in the lower half. The results reveal the nature of anomalous temperature fluctuations detected in earlier experiments. It is found that, at the magnetic field strength far exceeding the laminarization threshold, the natural convection develops in the form of coherent quasi-two-dimensional rolls aligned with the magnetic field. Transport of the rolls by the mean flow causes high-amplitude, low-frequency fluctuations of temperature.


2010 ◽  
Vol 46 (4) ◽  
pp. 393-402 ◽  
Author(s):  
F. Mokhtari ◽  
A. Bouabdallah ◽  
A. Merah ◽  
S. Hanchi ◽  
A. Alemany

2020 ◽  
Vol 58 (3) ◽  
pp. 400-409
Author(s):  
N. A. Luchinkin ◽  
N. G. Razuvanov ◽  
I. A. Belyaev ◽  
V. G. Sviridov

Sign in / Sign up

Export Citation Format

Share Document