The Finite Element Analysis of Dynamic Interaction of High-Speed Shinkansen, the Rail, and Bridge

Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.

Author(s):  
Wedad Alsadiq Alhawil ◽  
Ali A. Mehna ◽  
Asheraf Eldieb ◽  
Tarak Assaleh

High-speed electric machines (HSEMs) have been widely used in many of today’s applications.  For high-speed machines, in particular, it is very important to accurately predict natural frequencies of the rotor at the design stage to minimize the likelihood of failure. The main goal of this study is examine the design issues and performance of high-speed machines. For permanent-magnet synchronous motors (PMSM) driven by high-frequency drives, the rotor speed is normally above 30 000 rpm and it may exceed 100 000 rpm.  This study examined a 7-kw permanent magnet synchronous machine at 200,000 rpm. 3D finite element analysis (ANSYS WORKBENCH 15) was conducted to determine the natural frequencies and rotor patterns of a synchronous high-speed permanent magnetic motor, to assess the impact of leading design parameters, such as length, column diameter, span, bearings, material properties, and to compare the results of the finite element program with the results of analytical methods (i.e. critical speed).


2011 ◽  
Vol 250-253 ◽  
pp. 1050-1053
Author(s):  
Jun Ho Shin ◽  
Nam Yong Jee ◽  
Leslie J. Struble ◽  
R. James Kirkpatrick

The objective of this study is to develop a numerical model based on microstructural images of concrete and fundamental material properties of each constituent of concrete subjected to alkali-silica reaction (ASR). A microstructure-based finite element approach is employed directly to analyze the mechanical response of concrete to ASR. The modeling work involves acquiring and processing of microstructural images of specimens suffering from ASR using scanning electron microscopy, and implementing finite element program to analyze the microstructural images. The formulation of this model is based on pressure caused by the ASR product and on properties such as Young’s modulus and Poisson’s ratio. The finite element analysis program used to simulate structural behavior of structures attacked by ASR is object-oriented finite element developed at National Institute of Standards and Technology. The numerical results from this model are compared with experimental data, which have been measured using ASTM standard test C1260. The results show that the development and widening of cracks by formation and swelling of ASR gel cause the majority of expansion of mortar specimens rather than elastic elongation due to gel swelling.


2014 ◽  
Vol 705 ◽  
pp. 122-125
Author(s):  
Zi Qing Meng ◽  
Ming Li

as the high-speed vehicle, motorcycle vibration has an important influence on driving security, comfort, and handling stability. Therefore, this article builds the finite element analysis model of vibration forecast and damping of the finished motorcycle based on the structural characteristics. The major contents include main part modeling, boundary condition, and the finite element model of the finished motorcycle. In the paper, we build the finite dynamic response equation through analyzing the dynamic response, and research the resonance from different directions that caused by the engine harmonic response. Moreover, this article provides the vibration attenuation plan of the motorcycle structural modification and proves the feasibility through the analog computation and experimental measurement.


2000 ◽  
Vol 28 (2) ◽  
pp. 163-173 ◽  
Author(s):  
V. Sajeev ◽  
L. Vijayaraghavan ◽  
U. R. K. Rao

The finite element analysis gives the stresses and deflections of the broach and workpiece while cutting and burnishing. This has been achieved by developing a suitable finite element program for solving linear and non-linear material behaviour problems. The broach has been considered to behave elastically. In case of burnishing, the stresses on the workpiece result in yielding, and hence, non-linear material behaviour is considered for the workpiece. The program has been further modified to compute residual stresses on the broached component. The movement of a single burnishing tooth through the workpiece is simulated in a step-by-step manner, leading to residual stresses on the broached surface. The burnishing tooth and corresponding portion of the workpiece are modelled using FEM. The effect of tool-work interference and the ratio of radial to axial force on the stresses and deflections while burnishing have been studied. The residual stresses left behind on the broached component have been analytically evaluated.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


Author(s):  
Shamsoon Fareed ◽  
Ian May

Accidental loads, for example, due to heavy dropped objects, impact from the trawl gear and anchors of fishing vessels can cause damage to pipelines on the sea bed. The amount of damage will depend on the impact energy. The indentation will be localized at the contact area of the pipe and the impacting object, however, an understanding of the extent of the damage due to an impact is required so that if one should occur in practice an assessment can be made to determine if remedial action needs to be taken to ensure that the pipeline is still serviceable. There are a number of parameters, including the pipe cross section and impact energy, which influence the impact behaviour of a pipe. This paper describes the response, and assesses the damage, of mild steel pipes under high mass low velocity impacts. For this purpose full scale impacts tests were carried out on mild steel pipe having diameter of 457 mm, thickness of 25.4 mm and length of 2000 mm. The pipe was restrained along the base and a 2 tonnes mass with sharp impactor having a vertical downward velocity of 3870 mm/sec was used to impact the pipe transversely with an impact energy of 16 kJ. It was found from the impact tests that a smooth indentation was produced in the pipe. The impact tests were then used for validation of the non-linear dynamic implicit analyses using the finite element analysis software ABAQUS. Deformations at the impact zone, the rebound velocity, etc, recorded in the tests and the results of the finite element analysis were found to be in good agreement. The impact tests and finite element analyses described in this paper will help to improve the understanding of the response of steel pipes under impact loading and can be used as a benchmark for further finite element modelling of impacts on pipes.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Mohd Azman Y. ◽  
Juri S. ◽  
Hazran H. ◽  
NorHafiez M. N. ◽  
Dong R.

Dynamic response of ALPORAS aluminium foam has been investigated experimentally and numerically. The dynamic response is quantified by the force produced as the foam deforms as a function of time. Quasi-static tests are conducted to determine the quasi-static properties of the foam. In the impact test, the aluminium foams are fired towards a rigid load-cell and the force signals developed are recorded. Experimental dynamic stress is also compared with theoretical prediction using existing theory. Finite element model is constructed using LS-DYNA to simulate the impact test. Results from the experiment, finite element analysis and theoretical prediction are in acceptable agreement. Finally, parametric studies have been conducted using the verified model to investigate the effect of impact velocity and relative density towards the dynamic response of the foam projectile. It is found that the dynamic response of the foam is more sensitive towards impact velocity as compare with the foam relative density.


2011 ◽  
Vol 194-196 ◽  
pp. 1977-1981
Author(s):  
Dong Qiang Gao ◽  
Zhi Yun Mao ◽  
Zhong Yan Li ◽  
Fei Zhang

The modal analysis and harmonic response analysis of the machine tool table with periodic truss-core structures are analyzed and calculated by finite element analysis software-ANSYS Workbench, then we get the finite element analysis results. After comparing the results with finite element analysis results of the original machine tool table, we come to the conclusion that the dynamic properties of the machine tool table with periodic truss-core structures are better than the original machine tool table’s. It makes a base for optimized design and remanufacturing.


Sign in / Sign up

Export Citation Format

Share Document