A New Model-Based Tool for Fault Detection and Isolation in Machine- and Rotordynamics

Author(s):  
Dirk Söffker

Abstract Reliability and safety aspects are becoming much more important due to higher quality requirements, complicated and/or connected processes. The fault monitoring systems to be commonly used in machine- and rotordynamics are based on signal analysis methods. Furthermore, various kinds of fault detection and isolation (FDI)-schemes are already applied to a lot of technical applications of detecting and isolating sensor and actuator failures (Isermann, 1994; van Schrick, 1994) and also to fault detection in power plants (in general) or in manufacturing machines. An implicit assumption is that process or machine changes due to faults lead to changes in calculated parameters, which are unique and unambiguous. In the case of applying methods of signal analysis this means spectrums etc. the vibration behaviour will be monitored very well but have to be interpreted. On the other hand signal parameters usually only describe the system by analyzing output signals without use of known and unknown inner parameters and/or inputs. These parameters are available, and normally this knowledge is used by the operating staff interpreting the resulting signal parameters. In this way a decision-making problem appears so that questions about the physical character of faults, about the existence of special faults and also about the location of failures/faults has to be answered. In this way the experience and knowledge of the interpreting persons are very important. In this contribution the problems of the decision-making process are tried to defuse: • The available knowledge about the unfaulty system parameters is used to built up beside a nominal system model an unambiguous fault-specific ratio. Inner states of the structure are estimated by an PI-observer. • The developed robust PI-observer (Söffker et al., 1993a; Söffker et al., 1995a) estimates inner states and unknown inputs. In (Söffker et al., 1993b) this new method is applied to the crack detection of a rotor, but not proved. In this paper the proof is given and a generalization is described. The advantages in contrast to usual signal based vibration monitoring systems and also modern FDI-schemes are shown.

Author(s):  
Dmytro Shram ◽  
Oleksandr Stepanets

The main objective of this paper is to review of fault detection and isolation (FDI) methods and applications on various power plants. Due to the focus of the topic, on model and model-free FDI methods, technical details were kept in the references. We will overview the methods in terms of model-based, data driven and signal based methods further in the paper. Principles of three FDI methods are explained and characteristics of number of some popular techniques are described. It also summarizes data-driven methods and applications related to power generation plants. Parts of control system applications of FDI in TPPs with possible faults are shown in the Table I. Some popular techniques for the various faults in TPPs are discussed also.


2019 ◽  
Vol 25 (2) ◽  
pp. 213-235 ◽  
Author(s):  
Soumava Boral ◽  
Sanjay Kumar Chaturvedi ◽  
V.N.A. Naikan

Purpose Usually, the machinery in process plants is exposed to harsh and uncontrolled environmental conditions. Even after taking different types of preventive measures to detect and isolate the faults at the earliest possible opportunity becomes a complex decision-making process that often requires experts’ opinions and judicious decisions. The purpose of this paper is to propose a framework to detect, isolate and to suggest appropriate maintenance tasks for large-scale complex machinery (i.e. gearboxes of steel processing plant) in a simplified and structured manner by utilizing the prior fault histories available with the organization in conjunction with case-based reasoning (CBR) approach. It is also demonstrated that the proposed framework can easily be implemented by using today’s graphical user interface enabled tools such as Microsoft Visual Basic and similar. Design/methodology/approach CBR, an amalgamated domain of artificial intelligence and human cognitive process, has been applied to carry out the task of fault detection and isolation (FDI). Findings The equipment failure history and actions taken along with the pertinent health indicators are sufficient to detect and isolate the existing fault(s) and to suggest proper maintenance actions to minimize associated losses. The complex decision-making process of maintaining such equipment can exploit the principle of CBR and overcome the limitations of the techniques such as artificial neural networks and expert systems. The proposed CBR-based framework is able to provide inference with minimum or even with some missing information to take appropriate actions. This proposed framework would alleviate from the frequent requirement of expert’s interventions and in-depth knowledge of various analysis techniques expected to be known to process engineers. Originality/value The CBR approach has demonstrated its usefulness in many areas of practical applications. The authors perceive its application potentiality to FDI with suggested maintenance actions to alleviate an end-user from the frequent requirement of an expert for diagnosis or inference. The proposed framework can serve as a useful tool/aid to the process engineers to detect and isolate the fault of large-scale complex machinery with suggested actions in a simplified way.


Sign in / Sign up

Export Citation Format

Share Document