Vibration Control Method and Adaptability for Flexible Structures With Distributed Parameters Using a Hybrid Dynamic Absorber
Abstract This paper examines the vibration control of a flexible structure using a hybrid dynamic absorber. A new method for modeling flexible structures with distributed parameters using a reduced-order model with lumped parameters is specified. Both prevention of spillover and physical correspondence at the modeling points are taken into consideration. Due to restrictions of controller design it is necessary to employ reduced-order models of flexible structures when using LQ control theory to control vibration. By ignoring higher mode orders model reduction may invite vibration instability called spillover. In order to prevent spillover nodes of higher-order vibration modes are selected as modeling points. The effectiveness of this method is demonstrated by applying vibration control to a flexible tower-like structure. In addition the robustness of the control system is tested by placing the sensors and absorbers at points different from those selected by the model.