Multi-Freedom Planetary Transmission Scheme Based on Graph Theory of Topological Synthesis

Author(s):  
Dejun Mu ◽  
Huiying Wang ◽  
Huafeng Ding ◽  
Xiangwei Liu ◽  
Xing Zhang

In order to enrich the synthesis theory of planetary gearbox and meet the needs of multiple gearshifts this paper proposes a comprehensive method for the planetary gear transmission. Based on the topological graph atlas, the kinematic chains of 9-link and 2 degrees of freedom are synthesized. By the topological graph selection principle and gear function diagram transformation principle, 6-speed transmission mechanisms are obtained.

Author(s):  
Debraj Bhattacharjee ◽  
Prabha Bhola ◽  
Pranab K Dan

The automatic transmission system is very crucial for the high-speed vehicles, where the planetary or epicyclic gearbox is a standard feature. With the increase in design intricacies of planetary gearbox, mathematical modelling has become complex in nature and therefore there is a need for modelling of multistage planetary gearbox including the shifting scheme. A random search-based synthesis of three degrees of freedom (DOF) high-speed planetary gearbox has been presented in this paper, which derives an efficient gear shifting mechanism through designing the transmission schematic of eight speed gearboxes compounded with four planetary gear sets. Furthermore, with the help of lever analogy, the transmission power flow and relative power efficiency have been determined to analyse the gearbox design. A simulation-based testing and validation have been performed which show the proposed model is efficient and produces satisfactory shift quality through better torque characteristics while shifting the gears. A new heuristic method to determine suitable compounding arrangement, based on mechanism enumeration, for designing a gearbox layout is proposed here. An important finding on automotive gear shift quality due to closer gear ratio is also reported in this work.


Author(s):  
Huafeng Ding ◽  
Weijuan Yang ◽  
Peng Huang ◽  
Li Ma ◽  
Andrés Kecskeméthy

It is very important to synthesize as many feasible kinematic structures of mechanisms as possible in the conceptual design of mechanisms. Besides simple joint mechanisms, multiple joint mechanisms are also widely used in various mechanical systems. This paper proposes an automatic method for the synthesis of planar multiple joint kinematic chains which are seldom addressed in literature. The bicolor topological graph and the bicolor contracted graph are adopted to represent the topological structures of multiple joint kinematic chains. The characteristic number string of bicolor topological graphs is proposed and used to detect efficiently isomorphism in the synthesis progress. A systematic method for the synthesis of kinematic chains with one multiple joint is proposed, and the whole families of multiple joint kinematic chains with up to 16 links and all possible degrees of freedom are obtained for the first time.


Robotica ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 764-776 ◽  
Author(s):  
Sheng Guo ◽  
Wei Ye ◽  
Haibo Qu ◽  
Dan Zhang ◽  
Yuefa Fang

SUMMARYIn this paper, a class of novel four Degrees of Freedom (DOF) non-overconstrained parallel mechanisms with large rotational workspace is presented based on screw theory. First, the conflict between the number of independent constraints applied on the moving platform and the number of kinematic limbs for 4-DOF non-overconstrained parallel mechanism is identified. To solve this conflict, the platform partition method is introduced, and two secondary platforms are employed in each of the parallel mechanisms. Then, the motion requirements of the secondary platforms are analyzed and all the possible kinematic chains are enumerated. The geometrical assembly conditions of all possible secondary limbs are analyzed and some typical non-overconstrained parallel mechanisms are generated. In each of the parallel mechanisms, a planetary gear train is used to connect both of the secondary platforms. The large rotational workspace of the moving platform is obtained due to the relative motion of the two secondary platforms. Finally, the kinematics analysis of a typical parallel mechanism is conducted.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Huafeng Ding ◽  
Weijuan Yang ◽  
Peng Huang ◽  
Andrés Kecskeméthy

It is of great importance in the conceptual creative design of mechanical systems to synthesize as many feasible kinematic structures of mechanisms as possible. However, the methods for the structural synthesis of multiple joint kinematic chains are seldom addressed in literature even though they are widely used in various mechanical products. This paper proposes an automatic method to synthesize planar multiple joint kinematic chains. First, the bicolor topological graph and the bicolor contracted graph are introduced to represent the topological structures of multiple joint kinematic chains. Then, the characteristic number string of bicolor topological graphs is proposed and used to efficiently detect isomorphism in the synthesis progress. Finally, a systematic method for the synthesis of kinematic chains with one multiple joint is proposed, and the whole families of multiple joint kinematic chains with up to 16 links and all possible degrees of freedom are synthesized for the first time.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Liang Sun ◽  
Zhizheng Ye ◽  
Fuwei Lu ◽  
Rongjiang Cui ◽  
Chuanyu Wu

AbstractIsomorphism detection is fundamental to the synthesis and innovative design of kinematic chains (KCs). The detection can be performed accurately by using the similarity of KCs. However, there are very few works on isomorphism detection based on the properties of similar vertices. In this paper, an ameliorated multi-order adjacent vertex assignment sequence (AMAVS) method is proposed to seek out similar vertices and identify the isomorphism of the planar KCs. First, the specific definition of AMAVS is described. Through the calculation of the AMAVS, the adjacent vertex value sequence reflecting the uniqueness of the topology features is established. Based on the value sequence, all possible similar vertices, corresponding relations, and isomorphism discrimination can be realized. By checking the topological graph of KCs with a different number of links, the effectiveness and efficiency of the proposed method are verified. Finally, the method is employed to implement the similar vertices and isomorphism detection of all the 9-link 2-DOF(degree of freedom) planar KCs.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


Author(s):  
Wei Liu ◽  
Yunbo Yuan ◽  
Tao He ◽  
Donghua Wang

Considering the effect of teeth surface sliding friction, free vibration of two-stage planetary gears (TPG) is studied theoretically for the first time. The lateral-torsional coupling dynamic model and equation are established with three degrees of freedom: two translations and one rotation. The change rule of natural frequency is discussed with the case of first stage planetary gear’s number 4 and second stage planetary gear’s number 3, 4 and 5. Afterwards three vibration modes are summarized by calculating the free vibration. In order to understand the behavior of friction, the effect of friction on natural frequencies is analyzed for the case of considering friction and not considering friction. Furthermore, the ‘self-coupling’ phenomenon is obtained from the vibration of center component of TPG Meanwhile, the ‘mutual coupling’ is obtained between the first-stage planetary gear (FPG) and the second-stage planetary gear (SPG).


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879410 ◽  
Author(s):  
Yahui Cui ◽  
Jing Gao ◽  
Xiaomin Ji ◽  
Xintao Zhou ◽  
Haitao Yan

The concept of multi-attribute topological graph is proposed in this article to represent the characteristics of both structure and state for typical one-degree-of-freedom planar spur closed planetary gear trains. This method is well applied in power flow analysis and provides a graphical view for the types, values, directions, and transmission relationship of power flow, especially for the recirculation power representation. Furthermore, a template model of multi-attribute topological graph for closed planetary gear trains is also presented, which would be helpful to the multi-attribute topological graph generation for some certain types of closed planetary gear trains just by changing symbols in the template model. A corresponding software is also developed to make the analysis process more convenient. By inputting different parameters, the different visual results can be obtained automatically, thus benefiting engineers in conceptual design.


Author(s):  
Zahra Shahbazi ◽  
Horea T. Ilies¸ ◽  
Kazem Kazerounian

Proteins are nature’s nano-robots in the form of functional molecular components of living cells. The function of these natural nano-robots often requires conformational transitions between two or more native conformations that are made possible by the intrinsic mobility of the proteins. Understanding these transitions is essential to the understanding of how proteins function, as well as to the ability to design and manipulate protein-based nano-mechanical systems [1]. Modeling protein molecules as kinematic chains provides the foundation for developing powerful approaches to the design, manipulation and fabrication of peptide based molecules and devices. Nevertheless, these models possess a high number of degrees of freedom (DOF) with considerable computational implications. On the other hand, real protein molecules appear to exhibits a much lower mobility during the folding process than what is suggested by existing kinematic models. The key contributor to the lower mobility of real proteins is the formation of Hydrogen bonds during the folding process.


1994 ◽  
Vol 116 (2) ◽  
pp. 565-570 ◽  
Author(s):  
Hong-Sen Yan ◽  
Long-Chang Hsieh

An automotive gear differential is a joint-fractionated planetary gear train with two degrees-of-freedom. We summarize the characteristics of planetary gear trains and the design constraints of noncoupled automotive gear differentials to synthesize their corresponding kinematic graphs. Based on these graphs and the proposed respecializing process, we generate the atlas of design concepts for automotive gear differentials with any types of gear pairs. As a result, there are 4, 25, and 156 design concepts for five-, six-, and seven-bar automotive gear differentials, respectively.


Sign in / Sign up

Export Citation Format

Share Document