Parameter Identification of Complex Structures Using Finite Element Model Updating Techniques
In this work, an integrated reverse engineering strategy is presented that takes into account the complete process, from the developing of CAD model and the experimental modal analysis procedures to computational effective model updating techniques. Modal identification and structural model updating methods are applied, leading to develop high fidelity finite element model of geometrically complex and lightweight bicycle frame, using acceleration measurements. First, exploiting a 3D Laser Scanner, the digital shape of the real bike frame was developed and the final parametric CAD model was created. Next the finite element model of the frame was created by using quadrilateral shell and hexahedral solid elements. Due to complex geometry of the structure, the developed model consists of about one million degrees of freedom. The identification of modal characteristics of the frame is based on acceleration time histories, which are obtained through an experimental investigation of its dynamic response in a support-free state by imposing impulsive loading. A high modal density modal model is obtained. The modal characteristics are then used to update the finite element model. Single and multiobjective structural identification methods with appropriate substructuring methods, are used for estimating the parameters (material properties and shell thickness properties) of the finite element model, based on minimizing the deviations between the experimental and analytical modal characteristics (modal frequencies and mode shapes). Direct comparison of the numerical and experimental data verified the reliability and accuracy of the methodology applied.