Finding Better Local Optima in Topology Optimization via Tunneling

Author(s):  
Shanglong Zhang ◽  
Julián A. Norato

Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs.

Author(s):  
Xike Zhao ◽  
Hae Chang Gea ◽  
Wei Song

In this paper the Eigenvalue-Superposition of Convex Models (ESCM) based topology optimization method for solving topology optimization problems under external load uncertainties is presented. The load uncertainties are formulated using the non-probabilistic based unknown-but-bounded convex model. The sensitivities are derived and the problem is solved using gradient based algorithm. The proposed ESCM based method yields the material distribution which would optimize the worst structure response under the uncertain loads. Comparing to the deterministic based topology optimization formulation the ESCM based method provided more reasonable solutions when load uncertainties were involved. The simplicity, efficiency and versatility of the proposed ESCM based topology optimization method can be considered as a supplement to the sophisticated reliability based topology optimization methods.


Author(s):  
Erik Lund

The design problem of maximizing the buckling load factor of laminated multi-material composite shell structures is investigated using the so-called Discrete Material Optimization (DMO) approach. The design optimization method is based on ideas from multi-phase topology optimization where the material stiffness is computed as a weighted sum of candidate materials, thus making it possible to solve discrete optimization problems using gradient based techniques and mathematical programming. The potential of the DMO method to solve the combinatorial problem of proper choice of material and fiber orientation simultaneously is illustrated for a multilayered plate example and a simplified shell model of a spar cap of a wind turbine blade.


Author(s):  
Anna Dalklint ◽  
Mathias Wallin ◽  
Daniel A. Tortorelli

AbstractThis paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.


PAMM ◽  
2005 ◽  
Vol 5 (1) ◽  
pp. 423-424 ◽  
Author(s):  
Gregor Kotucha ◽  
Klaus Hackl

Author(s):  
Oliver Giraldo-Londoño ◽  
Glaucio H. Paulino

An interesting, yet challenging problem in topology optimization consists of finding the lightest structure that is able to withstand a given set of applied loads without experiencing local material failure. Most studies consider material failure via the von Mises criterion, which is designed for ductile materials. To extend the range of applications to structures made of a variety of different materials, we introduce a unified yield function that is able to represent several classical failure criteria including von Mises, Drucker–Prager, Tresca, Mohr–Coulomb, Bresler–Pister and Willam–Warnke, and use it to solve topology optimization problems with local stress constraints. The unified yield function not only represents the classical criteria, but also provides a smooth representation of the Tresca and the Mohr–Coulomb criteria—an attribute that is desired when using gradient-based optimization algorithms. The present framework has been built so that it can be extended to failure criteria other than the ones addressed in this investigation. We present numerical examples to illustrate how the unified yield function can be used to obtain different designs, under prescribed loading or design-dependent loading (e.g. self-weight), depending on the chosen failure criterion.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3736
Author(s):  
Hugo A. Alvarez ◽  
Habib R. Zambrano ◽  
Olavo M. Silva

The density based topology optimization procedure represented by the SIMP (Solid isotropic material with penalization) method is the most common technique to solve material distribution optimization problems. It depends on several parameters for the solution, which in general are defined arbitrarily or based on the literature. In this work the influence of the optimization parameters applied to the design of periodic cellular materials were studied. Different filtering schemes, penalization factors, initial guesses, mesh sizes, and optimization solvers were tested. In the obtained results, it was observed that using the Method of Moving Asymptotes (MMA) can be achieved feasible convergent solutions for a large amount of parameters combinations, in comparison, to the global convergent method of moving asymptotes (GCMMA) and optimality criteria. The cases of studies showed that the most robust filtering schemes were the sensitivity average and Helmholtz partial differential equation based filter, compared to the Heaviside projection. The choice of the initial guess demonstrated to be a determining factor in the final topologies obtained.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 472
Author(s):  
Mohamed H. Hassan ◽  
Salah Kamel ◽  
M. A. El-Dabah ◽  
Hegazy Rezk

In this paper, a modified version of a recent optimization algorithm called gradient-based optimizer (GBO) is proposed with the aim of improving its performance. Both the original gradient-based optimizer and the modified version, MGBO, are utilized for estimating the parameters of Photovoltaic models. The MGBO has the advantages of accelerated convergence rate as well as avoiding the local optima. These features make it compatible for investigating its performance in one of the nonlinear optimization problems like Photovoltaic model parameters estimation. The MGBO is used for the identification of parameters of different Photovoltaic models; single-diode, double-diode, and PV module. To obtain a generic Photovoltaic model, it is required to fit the experimentally obtained data. During the optimization process, the unknown parameters of the PV model are used as a decision variable whereas the root means squared error between the measured and estimated data is used as a cost function. The results verified the fast conversion rate and precision of the MGBO over other recently reported algorithms in solving the studied optimization problem.


Author(s):  
Mitsuo Yoshimura ◽  
Koji Shimoyama ◽  
Takashi Misaka ◽  
Shigeru Obayashi

This paper proposes a novel approach for fluid topology optimization using genetic algorithm. In this study, the enhancement of mixing in the passive micromixers is considered. The efficient mixing is achieved by the grooves attached on the bottom of the microchannel and the optimal configuration of grooves is investigated. The grooves are represented based on the graph theory. The micromixers are analyzed by a CFD solver and the exploration by genetic algorithm is assisted by the Kriging model in order to reduce the computational cost. Three cases with different constraint and treatment for design variables are considered. In each case, GA found several local optima since the objective function is a multi-modal function and each local optimum revealed the specific characteristic for efficient mixing in micromixers. Moreover, we discuss the validity of the constraint for optimization problems. The results show a novel insight for design of micromixer and fluid topology optimization using genetic algorithm.


Author(s):  
Po Ting Lin ◽  
Wei-Hao Lu ◽  
Shu-Ping Lin

In the past few years, researchers have begun to investigate the existence of arbitrary uncertainties in the design optimization problems. Most traditional reliability-based design optimization (RBDO) methods transform the design space to the standard normal space for reliability analysis but may not work well when the random variables are arbitrarily distributed. It is because that the transformation to the standard normal space cannot be determined or the distribution type is unknown. The methods of Ensemble of Gaussian-based Reliability Analyses (EoGRA) and Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) have been developed to estimate the joint probability density function using the ensemble of kernel functions. EoGRA performs a series of Gaussian-based kernel reliability analyses and merged them together to compute the reliability of the design point. EGTRA transforms the design space to the single-variate design space toward the constraint gradient, where the kernel reliability analyses become much less costly. In this paper, a series of comprehensive investigations were performed to study the similarities and differences between EoGRA and EGTRA. The results showed that EGTRA performs accurate and effective reliability analyses for both linear and nonlinear problems. When the constraints are highly nonlinear, EGTRA may have little problem but still can be effective in terms of starting from deterministic optimal points. On the other hands, the sensitivity analyses of EoGRA may be ineffective when the random distribution is completely inside the feasible space or infeasible space. However, EoGRA can find acceptable design points when starting from deterministic optimal points. Moreover, EoGRA is capable of delivering estimated failure probability of each constraint during the optimization processes, which may be convenient for some applications.


Author(s):  
Prachi Agrawal ◽  
Talari Ganesh ◽  
Ali Wagdy Mohamed

AbstractThis article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.


Sign in / Sign up

Export Citation Format

Share Document