Numerical Study of Superharmonic Resonances in a Mistuned Horizontal-Axis Wind-Turbine Blade-Rotor Set
Abstract This paper is on a simplified model of an in-plane blade-hub dynamics of a horizontal-axis wind turbine with a mistuned blade. The model has cyclic parametric and direct excitation due to gravity and aerodynamics. This work follows up a previous perturbation study applied to the blade equations written in the rotor-angle domain and decoupled from the hub, in which superharmonic and primary resonances were analyzed. In this work, the effects of mistuning, damping, and forcing level are illustrated. The first-order perturbation solutions are verified with comparisons to numerical simulations at superharmonic resonance of order two. Additionally, the effect of rotor loading on the rotor speed and blade amplitudes is investigated for different initial conditions and mistuning cases.