Modified Zero Time Delay Input Shaping for Industrial Robot With Flexibility

Author(s):  
Yu Zhao ◽  
Masayoshi Tomizuka

Although input shaping is an effective approach for vibration suppression in a variety of applications, the time delay introduced is not desired. Current techniques to reduce the time delay can not guarantee zero delay or may cause non-smooth motion, which is harmful for the actuators. In order to address such issue, a modified zero time delay input shaping is proposed in this paper. Experimental results show the advantage of the proposed approach.

2011 ◽  
Vol 2-3 ◽  
pp. 372-377 ◽  
Author(s):  
Yan Yan Han ◽  
Bing Li ◽  
Yu Lan Wei ◽  
Shou Xin Zhu ◽  
Ying Jun Dai

The classic multi-mode negative impulses input shapers can suppress the residual vibration of the multi-mode system effectively. But when these several frequencies bandwidths and amplitudes of vibration modes are greatly different, the time delay and the suppression performances of input shapers are decreased. However, the hybrid multi-mode negative impulses input shapers can overcome the disadvantage. The hybrid double-mode negative impulses input shapers of a 3-DOF parallel manipulator and are constructed and compared with the classic multi-mode negative impulses input shapers. And the numerical simulations are shown out, for different frequencies bandwidths and amplitudes of vibration, and the hybrid multi-mode negative impulses input shapers can increase the total suppression performance of input shaper.


Author(s):  
Michael Chan ◽  
Masayoshi Tomizuka

While strain wave gearing mechanisms, such as harmonic drives, have many practical benefits when properly utilized, they also create challenging problems for control engineers. Namely, these flexible gear reduction mechanisms can create output vibrations which cannot be directly measured or controlled by the actuator. In this paper, an input shaping approach will be proposed to pre-compensate the desired output trajectory to account for the transmission dynamics such that the system’s actual output will follow the original desired trajectory. Several system parameters need to be empirically identified prior to using the proposed procedure. This identification process will also be outlined. Both simulation and experimental results on a 6 degree of freedom industrial robot will be provided to demonstrate the effectiveness of the proposed approach.


Author(s):  
Jinhua She ◽  
Lulu Wu ◽  
Zhen-Tao Liu ◽  
◽  
◽  
...  

Vibration suppression in servo systems is significant in high-precision motion control. This paper describes a vibration-suppression method based on input shaping and adaptive model-following control. First, a zero vibration input shaper is used to suppress the vibration caused by an elastic load to obtain an ideal position output. Then, a configuration that combines input shaping with model-following control is developed to suppress the vibration caused by changes of system parameters. Finally, analyzing the percentage residual vibration reveals that it is effective to employ the sum of squared position error as a criterion. Additionally, a golden-section search is used to adjust the parameters of a compensator in an online fashion to adapt to the changes in the vibration frequency. A comparison with other input shaper methods shows the effectiveness and superiority of the developed method.


Author(s):  
Joshua Vaughan ◽  
William Singhose ◽  
Paulo Debenest ◽  
Edwardo Fukushima ◽  
Shigeo Hirose

Cranes are used extensively throughout the world in a wide variety of construction and material handling applications. The speed at which these cranes are operated is limited by payload oscillation. Input shaping is one method that reduces this oscillation, allowing higher speeds and improving operational efficiency. Another method to improve the operational capabilities of cranes is to allow base motion. This paper presents initial experimental results from a portable, mobile tower crane. A theoretical model of the crane is presented and experimentally verified. The oscillatory dynamics of the crane are highlighted and controllers to combat these unwanted dynamics are presented.


Sign in / Sign up

Export Citation Format

Share Document