Modeling and Experimental Testing of Hoverboard Dynamic Behavior

Author(s):  
Arnoldo Castro ◽  
William Singhose ◽  
Xiaoshu Liu ◽  
Khalid Sorensen ◽  
Eun Chan Kwak

Self-balancing human transporters are naturally unstable. However, when coupled with sophisticated control laws, these machines can provide mobility within a finite stability envelope. Challenging environmental conditions, or unanticipated operator action, can cause these machines to exhibit unexpected behavior. In an effort to better understand the behavior of these systems inside and outside the stability envelope, a dynamic model of a hoverboard is presented. Motion-capture data is also presented in which an operator’s interactions with the hoverboard were recorded.

Author(s):  
Ali Bouchaib ◽  
Rachid Taleb ◽  
Ahmed Massoum ◽  
Saad Mekhilef

The traditional quadcopter control systems should deal with two common problems. Namely, the singularities related to the inverse kinematics and the ambiguity linked to the quaternion representation of the dynamic model. Moreover, the stability problem due to the system nonlinearity and high degree of coupling. This paper provides a solution to the two issues by employing a geometrical integral-backstepping control system. The integral terms were added to improve system ability to track desired trajectories. The high-level control laws are considered as a virtual control and transmitted to the low-level to track the high-level commands. The proposed control system along with the quadcopter dynamic model were expressed in the special Euclidean group SE(3). Finally, the control system robustness against mismatching parameters was studied while tracking various paths.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Jun Dai ◽  
Yi Zhang ◽  
Hua Deng

Existing hybrid force/position control algorithms mostly explicitly contain a dynamic model. Moreover, force and position controllers will be switched frequently. To solve the above problems, a novel voltage-based weighted hybrid force/position control algorithm is proposed for redundant robot manipulators. Firstly, mapping between voltage and terminal position and orientation is established so that the designed controller can be simplified by adopting the motor current as the feedback to replace the tedious calculation of the dynamic model. Secondly, a voltage-based weighted hybrid force/position control algorithm is proposed to eliminate the selection matrix. Force and position control laws are summed directly through a weighted way to avoid the problems of space decomposition and switching. Thirdly, the stability is proven using Lyapunov stability theory, then the selection method for weighted coefficient is provided. Fourthly, comparative simulations are performed. Results show that the proposed algorithm is suitable for impedance control and hybrid force/position control and can compensate for their deficiencies. Lastly, the transport experiment in the YZ plane is conducted. Results show that position and force accuracies in the Y- and Z-axis directions are 3.489 × 10−4 and 7.313 × 10−4 m and 1.238 × 10−1 and 1.997 × 10−1 N, respectively. Accordingly, it can effectively improve the operation capability and control accuracy.


2011 ◽  
Vol 29 (supplement) ◽  
pp. 283-304 ◽  
Author(s):  
Timothy R. Brick ◽  
Steven M. Boker

Among the qualities that distinguish dance from other types of human behavior and interaction are the creation and breaking of synchrony and symmetry. The combination of symmetry and synchrony can provide complex interactions. For example, two dancers might make very different movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance, and the nature of the perceptions and responses of the dancers. However, such complex symmetries are often difficult to quantify. This paper presents three methods – Generalized Local Linear Approximation, Time-lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and synchrony in motion-capture data as is it applied to dance and illustrate these with examples from a study of free-form dance. Combined, these techniques provide powerful tools for the examination of the structure of symmetry and synchrony in dance.


2015 ◽  
Vol 51 ◽  
pp. 1-7 ◽  
Author(s):  
Irene Cheng ◽  
Amirhossein Firouzmanesh ◽  
Anup Basu

Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


2014 ◽  
Vol 70 (12) ◽  
pp. 2040-2046 ◽  
Author(s):  
L. Chekli ◽  
S. Phuntsho ◽  
L. D. Tijing ◽  
J. L. Zhou ◽  
J.-H. Kim ◽  
...  

Manufactured nanoparticles (MNPs) are increasingly released into the environment and thus research on their fate and behaviour in complex environmental samples is urgently needed. The fate of MNPs in the aquatic environment will mainly depend on the physico-chemical characteristics of the medium. The presence and concentration of natural organic matter (NOM) will play a significant role on the stability of MNPs by either decreasing or exacerbating the aggregation phenomenon. In this study, we firstly investigated the effect of NOM concentration on the aggregation behaviour of manufactured Fe-oxide nanoparticles. Then, the stability of the coated nanoparticles was assessed under relevant environmental conditions. Flow field-flow fractionation, an emerging method which is gaining popularity in the field of nanotechnology, has been employed and results have been compared to another size-measurement technique to provide increased confidence in the outcomes. Results showed enhanced stability when the nanoparticles are coated with NOM, which was due to electrosteric stabilisation. However, the presence of divalent cations, even at low concentration (i.e. less than 1 mM) was found to induce aggregation of NOM-coated nanoparticles via bridging mechanisms between NOM and Ca2+.


2017 ◽  
Vol 64 (2) ◽  
pp. 1589-1599 ◽  
Author(s):  
Guiyu Xia ◽  
Huaijiang Sun ◽  
Xiaoqing Niu ◽  
Guoqing Zhang ◽  
Lei Feng

Sign in / Sign up

Export Citation Format

Share Document