Optimal Speed Control for a Connected and Autonomous Electric Vehicle Considering Battery Aging and Regenerative Braking Limits

Author(s):  
Yunli Shao ◽  
Zongxuan Sun

Abstract This work develops a comprehensive optimal speed control framework for connected and autonomous electric vehicles considering both battery aging effects and regenerative braking limits. With the battery aging consideration, the energy benefits can be achieved together with a satisfactory battery life. The regenerative braking limits ensure the optimal control law is realistic and can be implemented in practice (e.g. there should be no regen when battery is almost full). The target vehicle intelligently controls the vehicle speed and car-following distance based on predicted traffic conditions using real-time information enabled by connectivity. The traffic prediction is based on a traffic flow model and can be implemented in a mixed-traffic scenario where both connected vehicles and non-connected vehicles share the road. The optimal control problem is formulated, simplified and discretized with minimal computational burden. It can be solved in real-time using an efficient nonlinear programming solver and is implemented in the model predictive control (MPC) fashion. The average computational time of the optimization is 0.54 seconds for a 15-second prediction horizon. A representative traffic scenario is evaluated in simulation where the target vehicle follows a vehicle platoon with 50% penetration rate of connectivity to pass a signalized roadway. The results show that 9.1% energy benefits can be obtained. The performance is satisfactory compared to 14.3% benefits with perfect traffic prediction.

2016 ◽  
Vol 138 (12) ◽  
pp. S12-S17 ◽  
Author(s):  
Mohd Azrin Mohd Zulkefli ◽  
Pratik Mukherjee ◽  
Yunli Shao ◽  
Zongxuan Sun

This article presents evaluation results of connected vehicles and their applications. Vehicle-to-vehicle communication (V2V) and vehicle-to-infrastructure communication (V2I) can enable a new paradigm of vehicle applications. The connected vehicle applications could significantly improve vehicle safety, mobility, energy savings, and productivity by utilizing real-time vehicle and traffic information. In the foreseeable future, connected vehicles need to operate alongside unconnected vehicles. This makes the evaluation of connected vehicles and their applications challenging. The hardware-in-the-loop (HIL) testbed can be used as a tool to evaluate the connected vehicle applications in a safe, efficient, and economic fashion. The HIL testbed integrates a traffic simulation network with a powertrain research platform in real time. Any target vehicle in the traffic network can be selected so that the powertrain research platform will be operated as if it is propelling the target vehicle. The HIL testbed can also be connected to a living laboratory where actual on-road vehicles can interact with the powertrain research platform.


2013 ◽  
Vol 7 (2) ◽  
pp. 19-25
Author(s):  
B. Arundhati ◽  
◽  
K. Alice Mary ◽  
Surya Kalavathi M ◽  
K. Shankar ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3864
Author(s):  
Tarek Ghoul ◽  
Tarek Sayed

Speed advisories are used on highways to inform vehicles of upcoming changes in traffic conditions and apply a variable speed limit to reduce traffic conflicts and delays. This study applies a similar concept to intersections with respect to connected vehicles to provide dynamic speed advisories in real-time that guide vehicles towards an optimum speed. Real-time safety evaluation models for signalized intersections that depend on dynamic traffic parameters such as traffic volume and shock wave characteristics were used for this purpose. The proposed algorithm incorporates a rule-based approach alongside a Deep Deterministic Policy Gradient reinforcement learning technique (DDPG) to assign ideal speeds for connected vehicles at intersections and improve safety. The system was tested on two intersections using real-world data and yielded an average reduction in traffic conflicts ranging from 9% to 23%. Further analysis was performed to show that the algorithm yields tangible results even at lower market penetration rates (MPR). The algorithm was tested on the same intersection with different traffic volume conditions as well as on another intersection with different physical constraints and characteristics. The proposed algorithm provides a low-cost approach that is not computationally intensive and works towards optimizing for safety by reducing rear-end traffic conflicts.


2021 ◽  
Vol 11 (5) ◽  
pp. 2346
Author(s):  
Alessandro Tringali ◽  
Silvio Cocuzza

The minimization of energy consumption is of the utmost importance in space robotics. For redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable for real-time implementation; nevertheless, on the other hand, they often provide solutions quite far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel inverse kinematics method for redundant manipulators is presented, which overcomes the above mentioned issues and is suitable for real-time implementation. The proposed method is based on the optimization of the kinetic energy integral on a limited subset of future end-effector path points, making the manipulator joints to move in the direction of minimum kinetic energy. The proposed method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number of test cases, and its performance is compared to the classical pseudoinverse solution and to a global optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one with a much lower computational time, which is compatible for real-time implementation.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 627
Author(s):  
David Marquez-Viloria ◽  
Luis Castano-Londono ◽  
Neil Guerrero-Gonzalez

A methodology for scalable and concurrent real-time implementation of highly recurrent algorithms is presented and experimentally validated using the AWS-FPGA. This paper presents a parallel implementation of a KNN algorithm focused on the m-QAM demodulators using high-level synthesis for fast prototyping, parameterization, and scalability of the design. The proposed design shows the successful implementation of the KNN algorithm for interchannel interference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. Additionally, we present a modified version of the KNN algorithm in which comparisons among data symbols are reduced by identifying the closest neighbor using the rule of the 8-connected clusters used for image processing. Real-time implementation of the modified KNN on a Xilinx Virtex UltraScale+ VU9P AWS-FPGA board was compared with the results obtained in previous work using the same data from the same experimental setup but offline DSP using Matlab. The results show that the difference is negligible below FEC limit. Additionally, the modified KNN shows a reduction of operations from 43 percent to 75 percent, depending on the symbol’s position in the constellation, achieving a reduction 47.25% reduction in total computational time for 100 K input symbols processed on 20 parallel cores compared to the KNN algorithm.


Sign in / Sign up

Export Citation Format

Share Document