Seepage Regime in Canyon Mass With Influence of Water-Storage Reservoir Impoundment Speed

Author(s):  
M. Kalabegishvili

Generally, most waterpower plants have to function under energy system peak load operation. Thus, there is a relatively quick water level variation observed in water-storage reservoirs, which contributes to the problems, especially in case of high-pressure waterworks facilities. Swift reservoir draw-down enhances seepage volumetric forces acting from the rock mass, which may lead to rock mass cracking and eventually to the development of landslide processes. A rapid impoundment of the water-storage reservoir is no less damaging. In this case, seepage in the rock mass is progressing in non-steady conditions, there occurring, in the inception stage: - high magnitude seepage hydrodynamic forces at the rock mass surface, creating additional loads on the rock mass, causing deflection of its surface, which may promote dam-foundation contact opening; - with increased pore pressures and seepage gradients, there may occur suffusion and other undesirable processes in the rock mass. In the work is given a numerical analysis of some parameters of seepage mode given based on right-bank investigation admitting presence of break in the dam filling-up mode. Options of time-intervals for the two basic versions – in case of sudden rising of water level in the upstream and in case of slow filling-up and setting up steady-state seepage mode in the massive – are being discussed. Determination of seepage flow parameters (including gradients) requires nonstationary field task to be solved. Finite-elements approximation for time analysis of the task is solved by finite-difference scheme. Seepage calculations are carried out by cyclic-iteration scheme – where volumetric water content, hydraulic conductivity and elasticity module determined numerically by functional relations. The subject of research is Enguri waterpower plant arch dam, at present the highest in the world (Georgia, height 271.5m, fig. 1.1). Consideration is being given to a variety of cases: - canyon slope in the zone of major geological fracture; - foundation in the central part of the dam.

2011 ◽  
Vol 255-260 ◽  
pp. 3514-3523
Author(s):  
Shi Sheng Li ◽  
Ze Rong Dong ◽  
Qi Li ◽  
Hua Zhao ◽  
Hui Zhang

After foundation excavation for a dam of a hydropower project, the rock mass would be unloaded and relaxed and its mechanical parameters would be lowered, thus influencing the dam stability. This paper makes an analysis of the deformation development law of the unloading rock mass of the dam foundation by analyzing the advance deformation of the dam foundation before excavation and the unloading rebound deformation of the dam foundation after excavation, and by analyzing the monitoring results of the compressive deformation after concreting of the dam and of the whole process deformation after impounding of the reservoir taking into account the results of both deformation test and acoustic test, which provides scientific basis for quality assessment of the arch dam foundation rock mass and for readjustment of the dam foundation rock mass mechanics design parameters, thus giving a reference to projects of the kind.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2209
Author(s):  
Abdul Latif ◽  
Manidipa Paul ◽  
Dulal Chandra Das ◽  
S. M. Suhail Hussain ◽  
Taha Selim Ustun

Smart grid technology enables active participation of the consumers to reschedule their energy consumption through demand response (DR). The price-based program in demand response indirectly induces consumers to dynamically vary their energy use patterns following different electricity prices. In this paper, a real-time price (RTP)-based demand response scheme is proposed for thermostatically controllable loads (TCLs) that contribute to a large portion of residential loads, such as air conditioners, refrigerators and heaters. Wind turbine generator (WTG) systems, solar thermal power systems (STPSs), diesel engine generators (DEGs), fuel cells (FCs) and aqua electrolyzers (AEs) are employed in a hybrid microgrid system to investigate the contribution of price-based demand response (PBDR) in frequency control. Simulation results show that the load frequency control scheme with dynamic PBDR improves the system’s stability and encourages economic operation of the system at both the consumer and generation level. Performance comparison of the genetic algorithm (GA) and salp swarm algorithm (SSA)-based controllers (proportional-integral (PI) or proportional integral derivative (PID)) is performed, and the hybrid energy system model with demand response shows the supremacy of SSA in terms of minimization of peak load and enhanced frequency stabilization of the system.


2017 ◽  
Vol 53 (10) ◽  
pp. 8266-8276 ◽  
Author(s):  
Michal Tušer ◽  
Tomáš Picek ◽  
Zuzana Sajdlová ◽  
Tomáš Jůza ◽  
Milan Muška ◽  
...  

2018 ◽  
Vol 25 (4) ◽  
pp. 919-935 ◽  
Author(s):  
Deng-hua Zhong ◽  
Han Wu ◽  
Bin-ping Wu ◽  
Yi-chi Zhang ◽  
Pan Yue

2018 ◽  
Vol 246 ◽  
pp. 01016
Author(s):  
Zhiqiang Zeng ◽  
Ji Liang ◽  
Mingxiang Yang ◽  
Zhaocai Zeng ◽  
Yu Lang

The plain river network is not only complex in shape but also contains many complex scenarios, such as interval inflow and outflow, hydraulic structures and water storage area, etc., which increases the difficulty of runoff simulation in plain river network. To address this problem, a hydrodynamic (HD) model coupled multiple scenarios that may occur in plain river network was proposed, which was used to simulate the runoff process of the plain river network. To illustrate the proposed model, Xi River was chosen as a study area. We designed some experiments for each scenario, and the experimental results show that simulation results have good consistency with the observation. It is worth noting that the simulation accuracy of the water level is always higher than the simulation accuracy of the flow. Moreover, the runoff simulation accuracy of runoff events with large runoff is relatively high. It turns out that HD model is suitable for runoff simulation of plain river network. In addition, we compared the flood diversion effects of water storage area and sluice, and the results show that the effect of water storage area is more obvious than sluice, and the flood diversion method combined with sluice and water storage area has better flood diversion effect. In conclusion, HD model is good at simulating floodplain storage effects, backwater and the change of water level and flow under the condition of engineering dispatching, which has important guiding significance for flood control in plain river network.


Sign in / Sign up

Export Citation Format

Share Document