Lateral Migration of Neutrally-Buoyant Particles in a Square Microchannel at Low Reynolds Numbers

Author(s):  
Byung Rae Cho ◽  
Young Won Kim ◽  
Jung Yul Yoo

Lateral migration of particles has drawn a lot of attention in suspension community for the last 50 years. Since there is no need for extra external forces, lateral migration of particles plays an important role in constructing microfluidic devices in diverse engineering applications. In this paper, an experimental study on lateral migration of neutrally-buoyant spherical particles transported through a square microchannel is carried out using a fluorescent microscope at low Reynolds numbers. Fluorescent microspheres with diameters of d = 6 μm, 10 μm, and 16 μm are adopted as the test particles, which yield channel-to-particle size ratios of 13.3, 8 and 5, respectively. Spatial distributions of the particles in dilute suspension are visualized at different Reynolds numbers. It is shown that particles are uniformly distributed over the channel cross-section at relatively low Reynolds numbers. As the Reynolds number increases, however, particles migrate inward from the wall and away from the central axis of the channel, so that consequently they accumulate at an equilibrium position, exhibiting the so-called “tubular pinch effect”, first observed by Segre´ and Silberberg as early as in 1962. Experimental results obtained in this work offer design rules for microfluidic channels that play important roles of particle separation or particle focusing.

2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


2014 ◽  
Vol 749 ◽  
pp. 320-330 ◽  
Author(s):  
Kazuma Miura ◽  
Tomoaki Itano ◽  
Masako Sugihara-Seki

AbstractThe inertial migration of neutrally buoyant spherical particles in square channel flows was investigated experimentally in the range of Reynolds numbers ($\mathit{Re}$) from 100 to 1200. The observation of particle positions at several cross-sections downstream from the channel entrance revealed unique patterns of particle distribution which reflects the presence of eight equilibrium positions in the cross-section, located at the centres of the channel faces and at the corners, except for low $\mathit{Re}$. At $\mathit{Re}$ smaller than approximately 250, equilibrium positions at the corners are absent. The corner equilibrium positions were found to arise initially in the band formed along the channel face, followed by a progressive shift almost parallel to the side wall up to the diagonal line with increasing $\mathit{Re}$. Further increase in $\mathit{Re}$ moves the corner equilibrium positions slightly toward the channel corner, whereas the equilibrium positions at the channel face centres are shifted toward the channel centre. As the observation sites become downstream, the particles were found to be more focused near the equilibrium positions keeping their positions almost unchanged. These lateral migration behaviours and focusing properties of particles in square channels are different to that observed in microchannels at lower $\mathit{Re}$ and to what would be expected from extrapolating from the results for circular pipes at comparable $\mathit{Re}$.


Author(s):  
Chia-Che Wu ◽  
Ping-Kuo Tseng ◽  
Meng-Jhu Hou ◽  
Ching-Hsiu Tsai

Recently, there has been an increasing interest to develop rapid, reliable and low-concentration detection methods of micro-organisms involved in bioterrorism, food poisoning, and clinical problems. How to detect virus at concentration below the threshold will be challenging with respect to specificity, selectivity, and sensitivity. Among all parameters, sensitivity is probably the most critical consideration. If the sensitivity is not satisfied for real-time detection, researchers need to duplicate numerous numbers of viruses. However, it will substantially increase processing times and experimental hazard. To increase the sensitivity of virus sensors, this paper discusses how to increase the density of linkers and viruses on sensor’s surface in the microfluidic channels. In the future, researcher could use emerging technology, such as PT-PCR, QCM, C-V and I-V measurements, etc, to detect viruses on sensor’s surface. Usually microorganisms, molecules, or viruses in the fluidic environment are at very low Reynolds numbers because of tiny diameters. At very low Reynolds numbers, viscous forces of molecules and viruses will dominate. Those micro- or nanoparticles will stop moving immediately when flows cease and drag forces disappear. Of course, molecules and viruses are still subject to Brownian motion and move randomly. In order to increase the adhesion density of micro- and nanoparticles on sensor’s surface, designs of the flow movements in microfluidic channel is proposed. Adhesion density of linker 11-mercaptoundecanoic acid (MUA) and turnip yellow mosaic virus (TYMV) with specific quantum dots were measured by confocal microscope. Results show that TYMV and MUA layers disperse randomly by dipping method. Infusion rate, flow rate, and transverse flow could affect the adhesion densities of recognition layers on sensors’ surface. Adhesion densities of MUA and TYMV can be reached 70∼80% by microfluidic method to contrast just 10% by dipping method.


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


Sign in / Sign up

Export Citation Format

Share Document