Results and Analysis of Implicit Large Eddy Simulations of Equilibrium Spatially Developing Turbulent Boundary Layers at Multiple Mach Numbers

Author(s):  
Mbu Waindim ◽  
Datta V. Gaitonde

Equilibrium turbulent flat plate boundary layers with time invariant statistics were obtained at Mach numbers 1.7, 2.3, and 2.9. These are to be used as the initial condition for Large Eddy Simulations (LES) or Direct Numerical Simulations (DNS) of shock wave/turbulent boundary layer interactions utilizing a body force-based method. The results obtained are supplemented by an analysis of the mean and statistical properties of the respective boundary layers. The spanwise extent of the domain required to allow adequate decorrelation between the centerline and the boundaries is investigated by extensively probing the flowfields obtained. This is done to quantify the coherent structures of the turbulent flow. Specifically, two point correlations and integral length scales are used to investigate spanwise decorrelation distances in an attempt to pick a computational domain which is large enough to permit decorrelation downstream but small enough to minimize computational costs. It is shown that by examining the precursor events in the upstream region, namely the generalized stability criterion, it is possible to provide estimates for the force field parameters necessary for transition for a given flow, with only a small portion of the domain in the neighborhood of the trip. The technique is made even more efficient by investigating the possibility of determining these parameters using a two-dimensional simulation. Additionally, the three flow fields obtained are surveyed to confirm that they are suitable for subsequent SBLI simulations. We check that (i)they possess the expected turbulent characteristics and (ii)there is no signature of the tripping mechanism.

Author(s):  
Adèle Poubeau ◽  
Roberto Paoli ◽  
Daniel Cariolle

This paper focuses on two decisive steps towards Large Eddy Simulation of a solid rocket booster jet. First, three-dimensional Large Eddy Simulations of a non-reactive booster jet including the nozzle were obtained at flight conditions of 20 km of altitude. A particularly long computational domain (400 nozzle exit diameters in the jet axial direction) was simulated, thanks to an innovative local time-stepping method via coupling multi instances of a fluid solver. The dynamics of the jet is analysed and comparison of the results with previous knowledge validates the simulations and confirms that this computational setup can be applied for Large Eddy Simulations of a reactive booster jet. The second part of this paper details the implementation of a simple method to study the hot plume chemistry. Despite its limitations, it is accurate enough to observe the various steps of the chemical mechanism and assess the effect of uncertainties of the rate parameters on chlorine reactions. It was also used to reduce the set of chemical reactions into a short scheme involving a minimum of species and having a limited impact on the physical time step of the Large Eddy Simulations.


2006 ◽  
Vol 128 (6) ◽  
pp. 1181-1191 ◽  
Author(s):  
V. Huijnen ◽  
L. M. T. Somers ◽  
R. S. G. Baert ◽  
L. P. H. de Goey ◽  
C. Olbricht ◽  
...  

The prediction performance of two computational fluid dynamics codes is compared to each other and to experimental data of a complex swirling and tumbling flow in a practical complex configuration. This configuration consists of a flow in a production-type heavy-duty diesel engine head with 130-mm cylinder bore. One unsteady Reynolds-averaged Navier-Stokes (URANS)-based simulation and two large-eddy simulations (LES) with different inflow conditions have been performed with the KIVA-3V code. Two LES with different resolutions have been performed with the FASTEST-3D code. The parallelization of the this code allows for a more resolved mesh compared to the KIVA-3V code. This kind of simulations gives a complete image of the phenomena that occur in such configurations, and therefore represents a valuable contribution to experimental data. The complex flow structures gives rise to an inhomogeneous turbulence distribution. Such inhomogeneous behavior of the turbulence is well captured by the LES, but naturally damped by the URANS simulation. In the LES, it is confirmed that the inflow conditions play a decisive role for all main flow features. When no particular treatment of the flow through the runners can be made, the best results are achieved by computing a large part of the upstream region, once performed with the FASTEST-3D code. If the inflow conditions are tuned, all main complex flow structures are also recovered by KIVA-3V. The application of upwinding schemes in both codes is in this respect not crucial.


2000 ◽  
Vol 157 (1) ◽  
pp. 256-279 ◽  
Author(s):  
Andrea Pascarelli ◽  
Ugo Piomelli ◽  
Graham V. Candler

Wind Energy ◽  
2020 ◽  
Vol 23 (6) ◽  
pp. 1482-1493
Author(s):  
Ola Eriksson ◽  
Karl Nilsson ◽  
Simon‐Philippe Breton ◽  
Stefan Ivanell

2016 ◽  
Vol 708 ◽  
pp. 012012 ◽  
Author(s):  
Alexandra Bobke ◽  
Ricardo Vinuesa ◽  
Ramis Örlü ◽  
Philipp Schlatter

Sign in / Sign up

Export Citation Format

Share Document