Interface Tracking Simulation of Phase-Change Phenomena: Boiling and Condensation Verification

Author(s):  
Mengnan Li ◽  
Igor A. Bolotnov

Interface tracking simulation (ITS) is one of the promising approaches to describe heat transfer of boiling phenomena and their underlying mechanisms. Better understanding and modeling of this process will benefit various engineering systems. In modern nuclear reactors, study on nucleate boiling phenomena is very important for the prediction of the Critical Heat Flux (CHF) phenomena. The presented research will implement and verify the capability of evaporation process modeling by the massively parallel research code, PHASTA. The comparison of the numerical results and the analytical results demonstrates that the overall behavior of the simulation compares well with the analytical solution. A second simulation of the single bubble growth with non-uniform temperature distribution demonstrates both condensation and evaporation modeling. In the third simulation flow boiling capabilities were preliminary tested with laminar flow demonstration case. These results will be applied to a larger scale, multi-bubble simulations and help modeling of nucleate boiling phenomena.

2000 ◽  
Vol 39 (9-11) ◽  
pp. 909-918 ◽  
Author(s):  
Olivier Zürcher ◽  
John R. Thome ◽  
Daniel Favrat

1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Author(s):  
Kan Zhou ◽  
Junye Li ◽  
Zhao-zan Feng ◽  
Wei Li ◽  
Hua Zhu ◽  
...  

For improving the functionality and signal speed of electronic devices, electronic components have been miniaturized and an increasing number of elements have been packaged in the device. As a result there has been a steady rise in the amount of heat necessitated to be dissipated from the electronic device. Recently microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging, In the present study an experimental study of subcooled flow boiling in a high-aspect-ratio, one-sided heating rectangular microchannel with gap depth of 0.52 mm and width of 5 mm was conducted with deionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, flow pattern and onset of nucleate boiling of subcooled flow boiling were investigated through instrumental measurements and a high speed camera. It was found that the slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, and the slope was greater for lower mass fluxes, with lower superheat required for boiling incipience. As for the visualization images, for relatively lower mass fluxes the bubbles generated were larger and not easy to depart from the vertical upward placed narrow microchannel wall, giving elongated bubbly flow and reverse backflow. The thin film evaporation mechanism dominated the entire test section due to the elongated bubbles and transient local dryout as well as rewetting occurred. Meanwhile the initiative superheat and heat flux of onset of nucleate boiling were compared with existing correlations in the literature with good agreement.


1997 ◽  
Vol 119 (4) ◽  
pp. 767-775 ◽  
Author(s):  
S. H. Najibi ◽  
H. Mu¨ller-Steinhagen ◽  
M. Jamialahmadi

Scale deposition on the heat transfer surfaces from water containing dissolved salts considerably reduces fuel economy and performance of the heat transfer equipment. In general, this problem is more serious during nucleate boiling due to the mechanisms of bubble formation and detachment. In this study, a large number of experiments were performed to determine the effect of fluid velocity, initial surface temperature, and bulk concentration on the rate of calcium carbonate deposition on heat transfer surfaces during subcooled flow boiling. A physically sound prediction model for the deposition process under these operating conditions has been developed which predicts the experimental data with good accuracy. Two previously published models are also discussed and used to predict the experimental data.


Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Yuhao Lin ◽  
Junye Li ◽  
Kan Zhou ◽  
Wei Li ◽  
Kuang Sheng ◽  
...  

Abstract The micro structured surfaces have significant impact on the flow patterns and heat transfer mechanisms during the flow boiling process. The hydrophobic surface promotes bubble nucleation while the hydrophilic surface supplies liquid to a heating surface, thus there is a trade-off between a hydrophobic and a hydrophilic surface. To examine the effect of heterogeneous wetting surface on flow boiling process, an experimental investigation of flow boiling in a rectangular vertical narrow microchannel with the heterogeneous wetting surface was conducted with deionized water as the working fluid. The heat transfer characteristics of flow boiling in the microchannel was studied and the flow pattern was photographed with a high-speed camera. The onset of flow boiling and heat transfer coefficient were discussed with the variation of heatfluxes and mass fluxes, the trends of which were analyzed along with the flow patterns. During the boiling process, the dominated heat transfer mechanism was nucleate boiling, with numerous nucleate sites between the hydrophilic/hydrophobic stripes and on the hydrophobic ones. In the meantime, after the merged bubbles were constrained by the channel walls, it would be difficult for them to expand towards upstream since they were restricted by the contact line between hydrophilic/hydrophobic stripes, thereby reduce the flow instability and achieve remarkable heat transfer performance.


Author(s):  
A. Mukherjee

Flow boiling through microchannels is characterized by nucleation and growth of vapor bubbles that fills the entire channel cross-sectional area. As the bubble nucleates and grows inside the microchannel, a thin film of liquid or a microlayer gets trapped between the bubble and the channel walls. The heat transfer mechanism present at the channel walls during flow boiling is studied numerically. These mechanisms are compared to the heat transfer mechanisms present during nucleate boiling and in a moving evaporating meniscus. It is shown that the thermal and the flow fields present inside the microchannels around the bubbles are fundamentally different compared to nucleate boiling or in a moving evaporating meniscus. It is explained that how thin film evaporation is responsible for creating an apparent nucleate boiling heat transfer mechanism inside the microchannels.


Author(s):  
Y. F. Xue ◽  
M. Z. Yuan ◽  
J. J. Wei

Experiments of flow boiling heat transfer coefficient of FC-72 were carried out over simulated silicon chip of 10×10×0.5 mm3 for electronic cooling. Four kinds of micro-pin-fins with the dimensions of 30×60, 30×120, 50×60, 50×120 μm2 (thickness, t × height, h) respectively, were fabricated on the chip surfaces by the dry etching technique to enhance boiling heat transfer. A smooth chip was also tested for comparison. The experiments were conducted at three different fluid velocities (0.5, 1 and 2m/s) and three different liquid subcoolings (15, 25 and 35K). All micro-pin-finned surfaces show a considerable heat transfer enhancement compared to the smooth surface. Both the forced convection and nucleate boiling heat transfer contribute to the total heat transfer performance. The contribution of each factor to the total heat transfer has been clearly presented in the flow boiling heat transfer coefficient curves. In a lower heat flux region, the heat transfer coefficient increases greatly with increasing fluid velocity, but increases slightly with increasing heat flux, indicating that the single-phase forced convection dominates the heat transfer process. With further increasing heat flux to the onset of nucleate boiling, the heat transfer coefficient increases remarkably. For a given liquid subcooling, the curves of flow boiling heat transfer coefficient at fluid velocities of 0.5 and 1 m/s almost follow one line for each surface, showing insensitivity of nucleate boiling heat transfer to fluid velocity. However, at the largest fluid velocity of 2 m/s, the slope of the flow boiling heat transfer coefficient curves for micro-pin-finned surfaces becomes smaller, indicating that the forced convection also plays an important role besides the nucleate boiling heat transfer. The curves of the flow boiling heat transfer coefficient can be used to determine the boiling incipience at different fluid velocities, which provides a basis for the suitable fluid velocity selection in designing highly efficient cooling scheme for electronic devices.


Author(s):  
Hongsheng Yuan ◽  
Sichao Tan ◽  
Kun Cheng ◽  
Xiaoli Wu ◽  
Chao Guo ◽  
...  

The flow rate can fluctuate in offshore nuclear power systems which are exposed to wind and waves, as well as in loops where flow instabilities occur, resulting in different thermal-hydraulic characteristics compared with that under steady flow. Among the thermal-hydraulic characteristics, onset of nucleate boiling (ONB) model determines whether the fluid is boiling, and boiling heat transfer is crucial to equipment performance and safety, both being key issues in subcooled flow boiling. Therefore, an experimental study was conducted to investigate how an imposed periodic flow oscillation affects the boiling inception and heat transfer of subcooled flow boiling of water in a vertical tube. The experiments were conducted under atmospheric pressure with the average flow rate ranging from 96kg/m2s to 287kg/m2s and heat flux ranging from 10kW/m2 to 197kW/m2. The relative pulsatile amplitude range is 0.1–0.3 and pulsatile period range is 10s-30s. Photographic images and thermal parameters such as temperatures and flow rate were recorded. The lack of nucleation site on the heated surface of the test section results in high wall superheat at ONB. The effects of pulsatile amplitude and period on superheat at boiling onset and average heat transfer were analyzed. The results show that the superheat at boiling inception is decreased when the average heat flux is lower than the heat flux at boiling inception of the corresponding steady flow, and the superheat at boiling onset is increased when the average heat flux is higher than the heat flux at boiling onset of the corresponding steady flow. The above effect of flow rate pulsation on superheat increases with increasing amplitude and decreasing period, and the mechanism can be explained by boiling nucleation theory. The lack of large active nucleation site also affects the boiling heat transfer. By comparing the contribution of nucleate boiling to heat transfer with the widely used Cooper’s pool boiling correlation, the subcooled flow boiling was found suppressed by convection. The average heat transfer of both the intermittent flow boiling and the single phase flow is influenced by flow oscillation.


Sign in / Sign up

Export Citation Format

Share Document