scholarly journals Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation

Author(s):  
Jen-Ping Chen ◽  
Michael D. Hathaway ◽  
Gregory P. Herrick

CFD calculations using high-performance parallel computing were conducted to simulate the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3-D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure-rise performance and pressure traces are compared with published experimental data before launching a detailed study of the flow evolution prior to the rotating stall. Spatial FFT analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes vertical to the axial direction. When approaching to stall, the passage shock changes from a single oblique shock to a dual-shock, which distorts the vertical trajectory of the tip clearance vortex but shows no evidence to cause flow separation that may contribute to stall.

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Jen-Ping Chen ◽  
Michael D. Hathaway ◽  
Gregory P. Herrick

Computational fluid dynamics calculations using high-performance parallel computing were conducted to simulate the prestall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure rise performance and pressure traces are compared with published experimental data before the study of flow evolution prior to the rotating stall. Spatial fast Fourier transform analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes perpendicular to the axial direction. When approaching stall, the passage shock changes from a single oblique shock to a dual shock, which distorts the perpendicular trajectory of the tip clearance vortex but shows no evidence of flow separation that may contribute to stall.


Author(s):  
Chunill Hah ◽  
Jo¨rg Bergner ◽  
Heinz-Peter Schiffer

The current paper reports on investigations aimed at advancing the understanding of the flow mechanism that leads to the onset of short-length scale rotating stall in a transonic axial compressor. Experimental data show large oscillation of the tip clearance vortex as the rotor operates near the stall condition. Inception of spike-type rotating stall is also measured in the current transonic compressor with high response pressure transducers. Computational studies of a single passage and the full annulus were carried out to identify flow mechanisms behind the spike-type stall inception in the current transonic compressor rotor. Steady and unsteady single passage flow simulations were performed, first to get insight into the interaction between the tip clearance vortex and the passage shock. The conventional Reynolds-averaged Navier-Stokes method with a standard turbulence closure scheme does not accurately reproduce tip clearance vortex oscillation and the measured unsteady pressure field. Consequently, a Large Eddy Simulation (LES) was carried out to capture more relevant physics in the computational simulation of the rotating stall inception. The unsteady random behavior of the tip clearance vortex and it’s interaction with the passage shock seem to be critical ingredients in the development of spike-type rotating stall in a transonic compressor. The Large Eddy Simulation was further extended to the full annulus to identify flow mechanisms behind the measured spike-type rotating stall inception. The current study shows that the spike-type rotating stall develops after the passage shock is fully detached from the blade passages. Interaction between the tip clearance vortex and the passage shock creates a low momentum area near the pressure side of the blade. As the mass flow rate decreases, this low momentum area moves further upstream and reversed tip clearance flow is initiated at the trailing edge plane. Eventually, the low momentum area near the pressure side reaches the leading edge and forward spillage of the tip clearance flow occurs. The flows in the affected blade passage or passages then stall. As the stalled blade passages are formed behind the passage shock, the stalled area rotates counter to the blade rotation just like the classical Emmon’s type rotating stall. Both the measurements and the computations show that the rotating stall cell covers one to two blade passage lengths and rotates at roughly 50% of the rotor speed.


Author(s):  
Jiaguo Hu ◽  
Tianyu Pan ◽  
Wenqian Wu ◽  
Qiushi Li ◽  
Yifang Gong

The instability has been the largest barrier of the high performance axial compressor in the past decades. Stall inception, which determines the route and the characteristics of instability evolution, has been extensively focused on. A new stall inception, “partial surge”, is discovered in the recent experiments. In this paper full-annulus transient simulations are performed to study the origin of partial surge initiated inception and explain the aerodynamic mechanism. The simulations show that the stall inception firstly occurs at the stator hub region, and then transfers to the rotor tip region. The compressor finally stalled by the tip region rotating stall. The stall evolution is in accord with the experiments. The stall evolution can be divided into three phases. In the first phase, the stator corner separation gradually merged with the adjacent passages, producing an annulus stall cell at the stator hub region. In the second phase, the total pressure rise of hub region emerges rapid decline due to the fast expansion of the annulus stall cell, but the tip region maintains its pressure rise. In the third phase, a new rotating stall cell appears at the rotor tip region, leading to the onset of fast drop of the tip region pressure rise. The stall cells transfer from hub region to the tip region is caused by two factors, the blockage of the hub region which transfers more load to the tip region, and the separation fluid fluctuations in stator domain which increase the circumferential non-uniformity in the rotor domain. High load and non-uniformity at the rotor tip region induce the final rotating stall.


1990 ◽  
Vol 112 (1) ◽  
pp. 109-115 ◽  
Author(s):  
N. M. McDougall

Detailed measurements have been made within an axial compressor operating both at design point and near stall. Rotor tip clearance was found to control the performance of the machine by influencing the flow within the rotor blade passages. This was not found to be the case in the stator blade row, where hub clearance was introduced beneath the blade tips. Although the passage flow was observed to be altered dramatically, no significant changes were apparent in the overall pressure rise or stall point. Small tip clearances in the rotor blade row resulted in the formation of corner separations at the hub, where the blade loading was highest. More representative clearances resulted in blockage at the tip due to the increased tip clearance flow. The effects that have been observed emphasize both the three-dimensional nature of the flow within compressor blade passages, and the importance of the flow in the endwall regions in determining the overall compressor performance.


Author(s):  
Masahiro Inoue ◽  
Motoo Kuroumaru ◽  
Shinichi Yoshida ◽  
Takahiro Minami ◽  
Kazutoyo Yamada ◽  
...  

Effect of the tip clearance on the transient process of rotating stall evolution has been studied experimentally in a low-speed axial compressor stage with various stator-rotor gaps. In the previous authors’ experiments for the small tip clearance, the stall evolution process of the rotor was sensitive to the gaps between the blade rows. For the large tip clearance, however, little difference is observed in the evolution processes independently of the blade row gap. In the first half process, it is characterized by gradual reduction of overall pressure-rise with flow rate decreasing, and the number of short length-scale disturbances is increasing with their amplitude increasing. In the latter half a long length-scale disturbance develops rapidly to result in deep stall. Just before the stall inception the spectral power density of the casing wall pressure reveals the existence of rotating disturbances with broadband high frequency near a quarter of the blade passing frequency. This is caused by the short length-scale disturbances occurring intermittently. A flow model is presented to explain mechanisms of the rotating short length-scale disturbance, which includes a tornado-like separation vortex and tip-leakage vortex breakdown. The model is supported by a result of a numerical unsteady flow simulation.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Huu Duc Vo ◽  
Choon S. Tan ◽  
Edward M. Greitzer

A computational study to define the phenomena that lead to the onset of short length-scale (spike) rotating stall disturbances has been carried out. Based on unsteady simulations, we hypothesize there are two conditions necessary for the formation of spike disturbances, both of which are linked to the tip clearance flow. One is that the interface between the tip clearance and oncoming flows becomes parallel to the leading-edge plane. The second is the initiation of backflow, stemming from the fluid in adjacent passages, at the trailing-edge plane. The two criteria also imply a circumferential length scale for spike disturbances. The hypothesis and scenario developed are consistent with numerical simulations and experimental observations of axial compressor stall inception. A comparison of calculations for multiple blades with those for single passages also allows statements to be made about the utility of single passage computations as a descriptor of compressor stall.


Author(s):  
N. M. McDougall

Detailed measurements have been made within an axial compressor operating both at design point and near stall. Rotor tip clearance was found to control the performance of the machine by influencing the flow within the rotor blade passages. This was not found to be the case in the stator blade row, where hub clearance was introduced beneath the blade tips. Although the passage flow was observed to be altered dramatically, no significant changes were apparent in the overall pressure rise or stall point. Small tip clearances in the rotor blade row resulted in the formation of corner separations at the hub, where the blade loading was highest. More representative clearances resulted in blockage at the tip due to the increased tip clearance flow. The effects which have been observed emphasize both the three dimensional nature of the flow within compressor blade passages, and the importance of the flow in the endwall regions in determining the overall compressor performance.


2021 ◽  
Author(s):  
Ming Zhang ◽  
Jia Li ◽  
Xu Dong ◽  
Dakun Sun ◽  
Xiaofeng Sun

Abstract Tip clearance flow is not only the source of undesirable noise but also a potential indicator for critical operating conditions with rotating stall or surge. It can induce blade vibration, which would cause premature blade failure when the vibration is strong enough. The paper presents experimental studies on the effects of tip clearance on the stall inception process in a low-speed high-load single stage fan with different tip clearance. From the point of view of flow range, it has been proved by computations that there is an optimal gap value, and an explanation is given according to different stall mechanisms of large and small tip clearance. However, the experiment of no tip clearance is not easy to achieve. In this experiment, a wearable soft wall casing was used to achieve “zero clearance”, and an explicit conclusion was obtained. The pressure rise and efficiency are improved at small tip clearance. Instantaneous Casing Pressure Field Measurement was carried out: instantaneous casing pressure fields were measured by 9 high response pressure transducers mounted on the casing wall. At the near stall point with large tip clearance, a narrow band increase of the amplitudes in the frequency spectrum at roughly half of the blade passing frequency can be observed according to the spectrum of static pressure at points on the endwall near the leading-edge and above the rotor. This phenomenon was explained from two aspects: tip clearance flow structure and pressure signal spectrum.


Author(s):  
Richard Williams ◽  
David Gregory-Smith ◽  
Li He

The tip clearance flow of industrial axial compressor rotors has a significant impact on compressor performance. Most tip clearance flow research work has been undertaken in the earlier low-pressure transonic stages of compressors. The main differences between the earlier (low-pressure) and later (high-pressure) stages include blade profile, stagger angle, Mach number, blade length and tip clearance. The tip clearance in the later stages of an industrial axial compressor is relatively large due to mechanical constraints and short blading. The stagger angle is much lower and so the tip clearance flow is at a higher angle to the (negative) axial direction. In the present work, a computational method has been employed to investigate tip clearance flow from 1% span to 10% span for blading such as that found in the later stages. A pinch tip model is used to model the blade tip in a cascade with a stationary and moving end-wall. It has been found that the tip clearance flow rolls up into a vortex much later than in the earlier stages. The migration of the tip clearance vortex across the passage is much less than for the earlier stages and also the induced vortex is much weaker. Comparisons between a cascade with fixed and moving end-walls are made, the main difference being that the tip clearance flow is stronger with a moving end-wall. The 1% tip clearance flow structure with stationary end-wall is shown to be different from all other cases investigated.


Author(s):  
Jo¨rg Bergner ◽  
Matthias Kinzel ◽  
Heinz-Peter Schiffer ◽  
Chunill Hah

To improve the understanding of spike-type stall inception of a transonic axial compressor, measurements of the unsteady static pressure in the rotor endwall region are analyzed. At design speed, a detailed experimental investigation of the unsteadiness of the pressure field at the rotor endwall at near stall condition shows a strong fluctuation of the tip clearance flow. Both vortex strength and -trajectory oscillate randomly. Analysis of the wall pressure time histories during stall inception suggests that spike-type disturbances of the flow field correlate with an upstream motion of one blade passages shock front. In addition, the evolution of a stall cell could be visualized by means of static wall-pressure contour plots.


Sign in / Sign up

Export Citation Format

Share Document