CFD Analysis of the Flow Through Tube Banks of HRSG

Author(s):  
Marco Torresi ◽  
Alessandro Saponaro ◽  
Sergio Mario Camporeale ◽  
Bernardo Fortunato

The prediction of the performance of HRSG (Heat Recovery Steam Generator) by means of CFD codes is of great interest, since HRSGs are crucial elements in gas turbine combined cycle power plants, and in CHP (combined heat and power) cycles. The determination of the thermo-fluid dynamic pattern in HRSGs is fundamental in order to improve the energy usage and limit the ineffectiveness due to non-homogeneous flow patterns. In order to reduce the complexity of the simulation of the fluid flow within the HRSG, it is useful modeling heat exchangers as porous media zones with properties estimated using pressure drop correlations for tube banks. Usually, air-side thermo-fluid dynamic characteristics of finned tube heat exchangers are determined from experimental data. The aim of this work is to develop a new procedure, capable to define the main porous-medium non-dimensional parameters (e.g., viscous and inertial loss coefficients; porosity; volumetric heat generation rate; etc...) starting from data obtained by means of accurate three-dimensional simulations of the flow through tube banks. Both finned and bare tube banks will be considered and results presented. The analysis is based on a commercial CFD code, Fluent v.6.2.16. In order to validate the proposed procedure, the simulation of an entire fired HRSG of the horizontal type developed by Ansaldo Caldaie for the ERG plant at Priolo (Italy) has been performed and results have been compared with their data.

Author(s):  
Ravin G. Naik ◽  
Chirayu M. Shah ◽  
Arvind S. Mohite

To produce the power with higher overall efficiency and reasonable cost is ultimate aim for the power industries in the power deficient scenario. Though combined cycle power plant is most efficient way to produce the power in today’s world, rapidly increasing fuel prices motivates to define a strategy for cost-effective optimization of this system. The heat recovery steam generator is one of the equipment which is custom made for combined cycle power plant. So, here the particular interest is to optimize the combined power cycle performance through optimum design of heat recovery steam generator. The case of combined cycle power plant re-powered from the existing Rankine cycle based power plant is considered to be simulated and optimized. Various possible configuration and arrangements for heat recovery steam generator has been examined to produce the steam for steam turbine. Arrangement of heat exchangers of heat recovery steam generator is optimized for bottoming cycle’s power through what-if analysis. Steady state model has been developed using heat and mass balance equations for various subsystems to simulate the performance of combined power cycles. To evaluate the performance of combined power cycles and its subsystems in the view of second law of thermodynamics, exergy analysis has been performed and exergetic efficiency has been determined. Exergy concepts provide the deep insight into the losses through subsystems and actual performance. If the sole objective of optimization of heat recovery steam generator is to increase the exergetic efficiency or minimizing the exergy losses then it leads to the very high cost of power which is not acceptable. The exergo-economic analysis has been carried to find the cost flow from each subsystem involved to the combined power cycles. Thus the second law of thermodynamics combined with economics represents a very powerful tool for the systematic study and optimization of combined power cycles. Optimization studies have been carried out to evaluate the values of decision parameters of heat recovery steam generator for optimum exergetic efficiency and product cost. Genetic algorithm has been utilized for multi-objective optimization of this complex and nonlinear system. Pareto fronts generated by this study represent the set of best solutions and thus providing a support to the decision-making.


2013 ◽  
Vol 795 ◽  
pp. 603-610 ◽  
Author(s):  
Mohamed Mazlan ◽  
A. Rahim ◽  
M.A. Iqbal ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
W. Razak ◽  
...  

Plastic Leaded Chip Carrier (PLCC) package has been emerged a promising option to tackle the thermal management issue of micro-electronic devices. In the present study, three dimensional numerical analysis of heat and fluid flow through PLCC packages oriented in-line and mounted horizontally on a printed circuit board, is carried out using a commercial CFD code, FLUENTTM. The simulation is performed for 12 PLCC under different inlet velocities and chip powers. The contours of average junction temperatures are obtained for each package under different conditions. It is observed that the junction temperature of the packages decreases with increase in inlet velocity and increases with chip power. Moreover, the increase in package density significantly contributed to rise in temperature of chips. Thus the present simulation demonstrates that the chip density (the number of packages mounted on a given area), chip power and the coolant inlet velocity are strongly interconnected; hence their appropriate choice would be crucial.


Author(s):  
Tariq Amin Khan ◽  
Nasir Mehdi Gardezi ◽  
Wei Li ◽  
Yang Zhou ◽  
Zahid Ayub

Abstract The performance on the air side flow is often limited due to its lower heat transfer coefficient. This work is related to numerical simulation to study the significance of employing delta winglets in flat finned and wavy finned-tube heat exchangers. For this purpose, three-dimensional simulation data and a multi-objective genetic algorithm are employed. The angle of attack (α) of delta winglets and Reynolds number varied from 15° to 75° and 500 to 1300, respectively. Employing delta winglets has increased the heat transfer per unit temperature and per unit volume (Z) and the fan power per unit core volume (E) for both flat finned and wavy finned-tube heat exchangers. To achieve a maximum heat transfer enhancement and a minimum friction factor, the optimal values of these parameters (Re and α) are calculated using the Pareto optimal strategy. For this purpose, CFD data, a surrogate model (neural network) and a multi-objective optimization genetic algorithm are combined. Results show that the performance of wavy finned-tube heat exchangers is higher than flat-finned tube heat exchangers which signify the importance of delta winglets in the wavy finned-tube heat exchangers.


2011 ◽  
Vol 110-116 ◽  
pp. 4607-4614
Author(s):  
M. Nematollahi ◽  
M. Rezaeian

Flow-induced corrosion is one of the most prevalent tube damage mechanisms in steam generators of power plants. In this study, tube failure of a steam generator in Fars Combined Cycle Power Plant is evaluated. In addition to analysis of the measured tube thicknesses and the failure statistics data, computational fluid dynamic (CFD) methods are used to simulate flow distribution inside and outside of the tubes in one header of the low pressure circuit of the plant steam generator. The results show that regarding the created two-phase flow pattern inside the tubes, the droplet impingement erosion is the main source of tube failures in the bending areas where the extrados surface of the tubes are partially prone to the droplets. The results are useful for modifying the design of the steam generator from different viewpoints such as, optimal design for appropriate configuration of downcomer, header and footer and tube bending. Also, selecting suitable material for the steam generator tubes and implementation of protective coating in risky areas would benefit from the present results.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 98 ◽  
Author(s):  
Luis Silva-Llanca ◽  
Marcelo del Valle ◽  
Alfonso Ortega ◽  
Andrés Díaz

Forecasting data center cooling demand remains a primary thermal management challenge in an increasingly larger global energy-consuming industry. This paper proposes a dynamic modeling approach to evaluate two different strategies for delivering cold air into a data center room. The common cooling method provides air through perforated floor tiles by means of a centralized distribution system, hindering flow management at the aisle level. We propose an idealized system such that five overhead heat exchangers are located above the aisle and handle the entire server cooling demand. In one case, the overhead heat exchangers force the airflow downwards into the aisle (Overhead Downward Flow (ODF)); in the other case, the flow is forced to move upwards (Overhead Upward Flow (OUF)). A complete fluid dynamic, heat transfer, and thermodynamic analysis is proposed to model the system’s thermal performance under both steady state and transient conditions. Inside the servers and heat exchangers, the flow and heat transfer processes are modeled using a set of differential equations solved in MATLAB™. This solution is coupled with ANSYS-Fluent™, which computes the three-dimensional velocity, temperature, and turbulence on the Airside. The two approaches proposed (ODF and OUF) are evaluated and compared by estimating their cooling effectiveness and the local Entropy Generation. The latter allows identifying the zones within the room responsible for increasing the inefficiencies (irreversibilities) of the system. Both approaches demonstrated similar performance, with a small advantage shown by OUF. The results of this investigation demonstrated a promising approach of data center on-demand cooling scenarios.


Author(s):  
Mohammed Mahdi ◽  
Roman Popov ◽  
Igor Pioro

The vast majority of Nuclear Power Plants (NPPs) are equipped with water- and heavy-water-cooled reactors. Such NPPs have lower thermal efficiencies (30–36%) compared to those achieved at NPPs equipped with Advanced Gas-cooled Reactors (AGRs) (∼42%) and Sodium-cooled Fast Reactors (SFRs) (∼40%), and, especially, compared to those of modern advanced thermal power plants, such as combined cycle with thermal efficiencies up to 62% and supercritical-pressure coal-fired power plants — up to 55%. Therefore, NPPs with water- and heavy-water-cooled reactors are not very competitive with other power plants. Therefore, this deficiency of current water-cooled NPPs should be addressed in the next generation or Generation-IV nuclear-power reactors / NPPs. Very High Temperature Reactor (VHTR) concept / NPP is currently considered as the most efficient NPP of the next generation. Being a thermal-spectrum reactor, VHTR will use helium as a reactor coolant, which will be heated up to 1000°C. The use of a direct Brayton helium-turbine cycle was considered originally. However, technical challenges associated with the direct helium cycle have resulted in a change of the reference concept to indirect power cycle, which can be also a combined cycle. Along with the VHTR, Gas-cooled Fast Reactor (GFR) concept / NPP is also regarded as one of the most thermally efficient concept for the upcoming generation of NPPs. This concept was also originally thought to be with the direct helium power cycle. However, technical challenges have changed the initial idea of power cycle to a number of options including indirect Brayton cycle with He-N2 mixture, application of SuperCritical (SC)-CO2 cycles or combined cycles. The objective of the current paper is to provide the latest information on new developments in power cycles proposed for these two helium-cooled Generation-IV reactor concepts, which include indirect nitrogen-helium Brayton gas-turbine cycle, supercritical-pressure carbon-dioxide Brayton gas-turbine cycle, and combined cycles. Also, a comparison of basic thermophysical properties of helium with those of other reactor coolants, and with those of nitrogen, nitrogen-helium mixture and SC-CO2 is provided.


Author(s):  
D. Maurya ◽  
S. Tiwari ◽  
G. Biswas ◽  
V. Eswaran ◽  
A. K. Saha

Unsteady three-dimensional laminar flow and heat transfer in a channel with a built-in oval tube and delta winglets have been obtained through the solution of the complete Navier-Stokes and energy equations using a body-fitted grid and a finite-volume method. The geometrical configuration represents an element of a gas-liquid fin-tube cross flow heat exchanger. The air-cooled condensers of the geothermal power plants also use fin-tube heat exchangers. The size of such heat exchangers can be reduced through enhancement in transport coefficients on the air (gas) side, which are usually small compared to the liquid side. In a suggested strategy, oval tubes are used in place of circular tubes, and delta winglet type vortex generators in common-flow-down configuration are mounted on the fin-surface in front of the tubes, while another delta winglet pair in common-flow-up configuration is mounted downstream of the first set of winglets. An evaluation of this augmentation strategy is attempted in this investigation. The investigation was carried out for a winglet angle of attack of 40 degrees to the incoming flow. The structures of the velocity field, and the heat transfer characteristics have been presented. The results indicate that vortex generators in conjunction with the oval tube show definite promise for the improvement of fin-tube heat exchangers.


Author(s):  
Silvio Cafaro ◽  
Alberto Traverso ◽  
Aristide F. Massardo

Monitoring of all components of large size combined cycle power plants (gas turbine, HRSG, steam turbine, auxiliaries) plays a determinant role in improving plant availability, profitability and maintenance scheduling. This paper presents a research project carried out by TPG (Thermochemical Power Group) of University of Genoa in collaboration with Ansaldo Energia S.p.A. to improve existing monitoring and diagnostics procedures and to develop innovative software tools for software-aided maintenance and customer support: the first part of research is concerned with the monitoring of a three pressure level HRSG (Heat Recovery Steam Generator), which is presented in this paper. A procedure for estimating HRSG performance in large size combined cycle power plants is presented. The work consists of the development of an original Matlab code which calculates heat exchangers’ performance, at different power plant operating conditions. The Matlab code uses some parameters (areas of heat exchangers, heat transfer coefficient, heat loss, pressure drop) coming from a detailed on-design model necessary to set some parameters for the calculation. The original Matlab code was developed with a twofold objective: to calculate the actual gas path inside the HRSG starting from the available measurements, thus obtaining the current effectiveness of all the heat exchangers in the HRSG; to estimate the expected performance of each heat exchanger to be compared with the actual ones. Once the actual effectiveness and the expected effectiveness of the heat exchanger are defined, non-dimensional performance parameters suitable for degradation assessment can be defined. Such parameters will be used to monitor plant degradation, to support plant maintenance, and to assist on-line troubleshooting. As a result of the sensitivity analysis, each performance parameter is coupled with an accuracy factor. The accuracy of each performance parameter is estimated through the sensitivity analysis, which allows to determine the best parameters to be monitored and to define the related tolerance due to measurement errors. The methodology developed has been successfully applied to historical logged data (2 years) of an existing large size (400 MW) combined cycle, showing the capabilities in estimating the degradation of the HRSG throughout plant life.


Author(s):  
Jacob Delimont ◽  
Aaron McClung ◽  
Marc Portnoff

Direct fired oxy-fuel combustion as a heat source for supercritical carbon dioxide (sCO2) power cycles is a promising method for providing the needed thermal energy input. The method of combustion has the potential to provide efficient power generation with integrated carbon capture at up to 99% of generated CO2. One of the highest efficiency power cycles being considered for sCO2 cycles in the recompression cycle. In the recompression sCO2 power cycle, the amount of energy recovered from the recuperation is roughly five times the energy added via the combustor. Because of this high degree of recuperation in sCO2 power cycles, the inlet temperature of the combustor is much higher than a more traditional combustor design. This elevated combustor temperature leads to some unique design challenges and approaches which are quite different from a traditional combustion system. A combustor designed for these conditions has never been built, and thus the design of the combustor discussed in this paper started from a clean slate. This necessitates a large degree of fundamental research which might not be necessary for a more well understood traditional combustor design process. Building on previous thermodynamic and chemical kinetics studies, a reduced order reaction kinetics model was used with ANSYS CFX software to explore various auto-ignition type combustor geometries. A discussion of some geometries and the modelling techniques used is presented. Various injector configurations were examined and metrics were used to compare the various configurations. By utilizing the CFD flow field results, a preliminary design for a 1MW-class oxy-fuel combustor was developed. In the past, little experimental research has been conducted on combustion within carbon dioxide at pressures above 200 bar. In order to confirm the validity of the auto-ignition style combustor a small bench top test rig was constructed to test the oxy-fuel combustion at the full pressure and temperature. This system was designed to validate some of the fundamental properties of the combustion. This includes a gas sampling system and a measurement of auto-ignition delay. Preliminary, data from a bench top scale, sCO2 oxy-fuel combustor experiment will be presented. The results from this work will enable future development of sCO2 power cycles which enable 99% carbon capture, while maintaining overall cycle efficiency which is competitive with natural gas combined cycle power plants.


Sign in / Sign up

Export Citation Format

Share Document