Flow Investigations in the Tip Gap of Rotor Blade Tips With Squealer Cavity

Author(s):  
Andreas Fischer ◽  
Jörg König ◽  
Jürgen Czarske ◽  
Clemens Rakenius ◽  
Gregor Schmid ◽  
...  

The tip leakage flow in turbines is considered to be responsible/or significant machine losses. An efficient reduction of these losses by e. g. squealer cavities at rotor blade tips requires a detailed physical and quantitative understanding of the tip leakage flow. For this purpose, numerical flow simulations are a valuable tool, but they have to be validated by measurements. However, non-intrusive, optical flow measurements in a rotating machine are challenging due to the small tip gap dimensions. Using an optimized optical setup, all three velocity components of the tip gap flow field were resolved while the turbine (1.5 stage low Mach number turbine test rig) was running with 930Hz blade passing frequency at the design point. The measurement results are in good qualitative agreement with numerical flow simulations. The gap flow above the squealer cavity is not homogeneous, but has several flow gradients, which mainly result from the blade tip geometry and the continuity of the flow. Furthermore, the flow structure between two successive rotor blades was resolved yielding the size and shape of the tip leakage vortex downstream at the suction side of the rotor blade in the measurement plane. Consequently, the capabilities of the applied measurement approach opens promising perspectives toward the development of optimum blade tip designs with minimized tip leakage.

2008 ◽  
Author(s):  
Md Hamidur Rahman ◽  
Sung In Kim ◽  
Ibrahim Hassan

Steady simulations have been performed to investigate tip leakage flow and heat transfer characteristics on the casing and rotor blade tip in a single stage turbine engine. A turbine stage of stator and rotor was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data. The effects of tip clearance height and rotor rotational speed on the blade tip and casing heat transfer characteristics are mainly considered. It is observed that the tip leakage flow structure is highly dependent on the height of the tip gap as well as speeds of the rotor blade. In all cases, flow separates just around the corner of the pressure side of the blade tip. The region of recirculating flow increases with the increase of the clearance height. Then the flow reattaches on the tip surface near the suction side beyond the flow separation. This flow reattachment enhances surface heat transfer. The leakage flow interaction with the reverse cross flow, induced by relative casing motion, is found to have significant effect on the blade tip and casing heat transfer distribution. Critical region of high heat transfer on the casing exists near the blade tip leading edge and along the pressure side edge at all clearance height. Whereas, at high speed rotation, it tends to move towards the trailing edge due to the change of inflow angle.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


Author(s):  
C. De Maesschalck ◽  
S. Lavagnoli ◽  
G. Paniagua

In high-speed unshrouded turbines tip leakage flows generate large aerodynamic losses and intense unsteady thermal loads over the rotor blade tip and casing. The stage loading and rotational speeds are steadily increased to achieve higher turbine efficiency, and hence the overtip leakage flow may exceed the transonic regime. However, conventional blade tip geometries are not designed to cope with supersonic tip flow velocities. A great potential lays in the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics, limit the entropy production in the overtip gap, manage the heat load distribution over the blade tip and improve the turbine efficiency at high stage loading coefficients. The present paper develops an optimization strategy to produce a set of blade tip profiles with enhanced aerothermal performance for a number of tip gap flow conditions. The tip clearance flow was numerically simulated through two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) calculations that reproduce an idealized overtip flow along streamlines. A multi-objective optimization tool, based on differential evolution combined with surrogate models (artificial neural networks), was used to obtain optimized 2D tip profiles with reduced aerodynamic losses and minimum heat transfer variations and mean levels over the blade tip and casing. Optimized tip shapes were obtained for relevant tip gap flow conditions in terms of blade thickness to tip gap height ratios (between 5 and 25), and blade pressure loads (from subsonic to supersonic tip leakage flow regimes) imposing fixed inlet conditions. We demonstrated that tip geometries which perform superior in subsonic conditions are not optimal for supersonic tip gap flows. Prime tip profiles exist depending on the tip flow conditions. The numerical study yielded a deeper insight on the physics of tip leakage flows of unshrouded rotors with arbitrary tip shapes, providing the necessary knowledge to guide the design and optimization strategy of a full blade tip surface in a real 3D turbine environment.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
Joseph Katz

Experiments in a refractive index-matched axial turbomachine facility show that semicircular skewed axial casing grooves (ACGs) reduce the stall flowrate by 40% but cause a 2.4% decrease in the maximum efficiency. Aiming to elucidate mechanism that might cause the reduced efficiency, stereo-PIV measurements examine the impact of the ACGs on the flow structure and turbulence in the tip region near the best efficiency point (BEP), and compare them to those occurring without grooves and at low flowrates. Results show that the periodic inflow into the groove peaks when the rotor blade pressure side (PS) overlaps with the downstream end of the groove, but diminishes when this end faces the suction side (SS). Entrainment of the PS boundary layer and its vorticity generates a vortical loop at the entrance to the groove, and a “discontinuity” in the tip leakage vortex (TLV) trajectory. During exposure to the SS, the backward tip leakage flow separates at the entrance to the groove, generating a counter-rotating circumferential “corner vortex,” which the TLV entrains into the passage at high flowrates. Interactions among these structures enlarge the TLV and create a broad area with secondary flows and elevated turbulence near the groove's downstream corner. A growing shear layer with weaker turbulence also originates from the upstream corner. The groove also increases the flow angle upstream of the blade tip and varies it periodically. Accordingly, the circulation shed from the blade tip and strength of leakage flow increase near the blade leading edge (LE).


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Aniwat Tiralap ◽  
Choon S. Tan ◽  
Eric Donahoo ◽  
Matthew Montgomery ◽  
Christian Cornelius

Changes in loss generation associated with altering rotor tip blade loading of an embedded rotor–stator compressor stage are assessed with unsteady three-dimensional computations, complemented by control volume analyses. Tip-fore-loaded and tip-aft-loaded rotor blades are designed to provide variation in rotor tip blade loading distributions for determining a compressor design hypothesis that aft-loading a rotor blade tip yields a reduction in loss generation in a stage environment. Aft-loading a rotor blade tip delays the formation of tip leakage flow, resulting in a relatively less mixed-out tip leakage flow at the rotor outlet and a reduction in overall tip leakage mass flow, hence a lower loss generation. However, the attendant changes in tip flow angle distribution are such that there is an overall increase in the flow angle mismatch between tip flow and main flow, leading to higher loss generation. The latter outweighs the former; therefore, rotor passage loss from aft-loading a rotor tip is higher unless a constraint is imposed on tip flow angle distribution so that the associated induced loss is negligible. Tip leakage flow, which is not mixed-out at the rotor outlet, is recovered in the downstream stator. The tip leakage flow recovery process yields a higher benefit for a relatively less mixed-out tip leakage flow in the tip-aft-loaded rotor blades on a time-averaged basis. These characterizing parameters together determine the attendant overall loss associated with rotor tip leakage flow in a compressor stage environment. The revised design hypothesis is thus as follows: A rotor should be tip-aft-loaded and hub-fore-loaded while a stator should be hub-aft-loaded and tip-fore-loaded with tip/hub leakage flow angle distribution such that it results in no additional loss. For the compressor stage being assessed here, an estimated 0.15 points enhancement in stage efficiency is possible from aft-loading rotor tip only.


Author(s):  
Xing Yang ◽  
Qiang Zhao ◽  
Zhao Liu ◽  
Zhenping Feng ◽  
Terrence W. Simon

Abstract The rotor casing of gas turbine engines is generally cooled with cooling air from compressors and then the cooling air is discharged into the passage flow of the rotor. In this paper, a novel design both for the blade tip leakage flow control and for the rotor casing and tip cooling is proposed. Cooling air is injected through a pair of inclined rows of discrete holes positioned between 30% and 50% axial chord downstream of the blade leading edge in the casing. The casing injection forms as air-curtain within the blade tip gap, and inhibits the development of the tip leakage flows and provides secondary-order cooling for the rotor tip. Air injection from the rotor casing onto flat and recessed blade tips is investigated using numerical simulations that is validated by extensive aerodynamic and heat transfer experimental data. Flow and film cooling over the blade tip and turbine overall aerodynamic performance are examined in detail for two casing injection rates. Comparisons between flat tip without casing injection (baseline) case and the casing injection cases show that the air-curtain injection significantly alters the flow structures near the casing by modifying the development and migration of the tip leakage flow. The air-curtain injection over the flat and recessed tips both generates turbine stage overall aerodynamic efficiency improvement due to the sealing effects of the casing injection, but the efficiency gain depends on the competing results between the sealing effects and the “over-blown” effects of the air-curtain injection. Applying a recess to the blade tip is generally detrimental to the efficiency improvement by the air-curtain injection. In addition to efficiency improvement, secondary-order cooling effects from the casing injection are found to provide considerable thermal protection for the blade tips. However, increasing injection rate reduces the film cooling performance over the rotor tip surfaces. The recessed tip could present better film cooling effectiveness than the flat tip in the presence of the air-curtain.


Author(s):  
Aniwat Tiralap ◽  
Choon S. Tan ◽  
Eric Donahoo ◽  
Matthew Montgomery ◽  
Christian Cornelius

Changes in loss generation associated with altering the rotor tip blade loading of an embedded rotor-stator compressor stage are assessed with unsteady three-dimensional computations, complemented by control volume analyses. Tip-fore-loaded and tip-aft-loaded rotor blades are designed and assessed to provide variation in rotor tip blade loading distributions for determining if aft-loading rotor tip would yield a stage performance benefit in terms of a reduction in loss generation. Aft-loading rotor blade tip delays the formation of tip leakage flow resulting in a relatively less mixed-out tip leakage flow at the rotor outlet and a reduction in overall tip leakage mass flow, hence a lower loss generation; however, the attendant changes in tip flow angle distribution are such that there is an overall increase in the flow angle mismatch between tip flow and main flow leading to higher loss generation. The latter outweighs the former so that rotor passage loss from aft-loading rotor tip is marginally higher unless a constraint is imposed on tip flow angle distribution so that associated induced loss is negligible; a potential strategy for achieving this is proposed. Tip leakage flow, which is not mixed-out at the rotor outlet, enters the downstream stator, where it can be recovered. The tip leakage flow recovery process yields a higher benefit for a relatively less mixed-out tip leakage flow from aft-loading a rotor blade tip. These characterizing parameters together determine the attendant loss associated with rotor tip leakage flow in a compressor stage environment. A revised design hypothesis is thus as follows: rotor should be tip-aft-loaded and hub-fore-loaded while stator should be hub-aft-loaded and tip-fore-loaded with tip/hub leakage flow angle distribution such that it results in no additional loss. For the compressor stage being assessed here, an estimated 0.15 points enhancement in stage efficiency is possible from aft-loading rotor tip only. In the course of assessing the benefit from unsteady tip leakage flow recovery in the downstream stator, it was determined that tip clearance flow is inherently unsteady with a time-scale distinctly different from the blade passing time. The disparity between the two timescales: (i) defines the periodicity of the unsteady rotor-stator flow, which is an integral multiple of blade passing time; and (ii) causes tip leakage vortex to enter the downstream stator at specific pitchwise locations for different blade passing cycles, a tip leakage flow phasing effect. Despite the inherent unsteadiness from tip leakage flow, the recovery process is demonstrated to be beneficial on a time-averaged basis.


2013 ◽  
Vol 136 (4) ◽  
Author(s):  
C. De Maesschalck ◽  
S. Lavagnoli ◽  
G. Paniagua

In high-speed, unshrouded turbines, tip leakage flows generate large aerodynamic losses and intense unsteady thermal loads over the rotor blade tip and casing. The stage-loading and rotational speeds are steadily increased to achieve higher turbine efficiency, and hence, the overtip leakage flow may exceed the transonic regime. However, conventional blade tip geometries are not designed to cope with supersonic tip flow velocities. A great potential lies in the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics, limit the entropy production in the overtip gap, manage the heat-load distribution over the blade tip, and improve the turbine efficiency at high-stage loading coefficients. The present paper develops an optimization strategy to produce a set of blade tip profiles with enhanced aerothermal performance for a number of tip gap flow conditions. The tip clearance flow was numerically simulated through two-dimensional compressible Reynolds-averaged Navier–Stokes (RANS) calculations that reproduce an idealized overtip flow along streamlines. A multiobjective optimization tool, based on differential evolution combined with surrogate models (artificial neural networks), was used to obtain optimized 2D tip profiles with reduced aerodynamic losses and minimum heat transfer variations and mean levels over the blade tip and casing. Optimized tip shapes were obtained for relevant tip gap flow conditions in terms of blade thickness to tip gap height ratios (between 5 and 25) and blade pressure loads (from subsonic to supersonic tip leakage flow regimes), imposing fixed inlet conditions. We demonstrated that tip geometries that perform superior in subsonic conditions are not optimal for supersonic tip gap flows. Prime tip profiles exist, depending on the tip flow conditions. The numerical study yielded a deeper insight on the physics of tip leakage flows of unshrouded rotors with arbitrary tip shapes, providing the necessary knowledge to guide the design and optimization strategy of a full blade tip surface in a real 3D turbine environment.


Sign in / Sign up

Export Citation Format

Share Document