Near Stall Behavior of a Transonic Compressor Rotor With Casing Treatment

Author(s):  
Christoph Brandstetter ◽  
Felix Holzinger ◽  
Heinz-Peter Schiffer ◽  
Sina Stapelfeldt ◽  
Mehdi Vahdati

The aerodynamic and aeroelastic performance of an advanced axial slot casing treatment (CT) was investigated on a modern one and a half stage transonic compressor test rig. It is generally accepted that a well designed CT can extend the aerodynamic stability range of a compressor to lower mass flows. The extension of stall margin of the compressor rotor blades by using CT has been the subject of numerous research articles but much less attention has been paid to the behavior of the compressor in direct vicinity of the stability limit. For the compressor investigated here, two different phenomena were repeatedly observed near stall: 1) self-excited blade vibration, and 2) low engine order fluctuations developing into rotating stall. The current investigation firstly aims to identify the triggers for each of these phenomena. It then focusses on the aerodynamic and aeromechanical mechanism which lead to the formation of low engine order fluctuations shortly before stall. In order to measure the unsteady and transient effects, the system was instrumented with unsteady wall pressure transducers, a capacitive tip-timing system and strain gauges on the rotor blades. The flow structure in the blade tip region was measured via Particle Image Velocimetry underneath the CT-Cavities. Measurements showed a strong correlation between CT activity and the development of the low frequency oscillations with associated blade vibrations. Using numerical simulations, presented and validated in this paper, this correlation was attributed to an aerodynamic coupling between rotor passages through the recirculation of fluid inside the cavities.

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Daniel Möller ◽  
Maximilian Jüngst ◽  
Felix Holzinger ◽  
Christoph Brandstetter ◽  
Heinz-Peter Schiffer ◽  
...  

This paper presents a numerical study on blade vibration for the transonic compressor rig at the Technische Universität Darmstadt (TUD), Darmstadt, Germany. The vibration was experimentally observed for the second eigenmode of the rotor blades at nonsynchronous frequencies and is simulated for two rotational speeds using a time-linearized approach. The numerical simulation results are in close agreement with the experiment in both cases. The vibration phenomenon shows similarities to flutter. Numerical simulations and comparison with the experimental observations showed that vibrations occur near the compressor stability limit due to interaction of the blade movement with a pressure fluctuation pattern originating from the tip clearance flow. The tip clearance flow pattern travels in the backward direction, seen from the rotating frame of reference, and causes a forward traveling structural vibration pattern with the same phase difference between blades. When decreasing the rotor tip gap size, the mechanism causing the vibration is alleviated.


Author(s):  
Jo¨rg Bergner ◽  
Heinz-Peter Schiffer

Three-dimensional laser-2-focus measurements complemented by measurements of the instantaneous static wall pressure in the casing above the rotor are used to investigate short length-scale rotating stall inception in an axial transonic compressor rotor. The data was collected at the Darmstadt Transonic Compressor using the forward swept “Rotor-3”. Detailed analysis of the experimental data reveals that in this configuration with pronounced forward sweep stall is not directly caused by the blockage created by the shock vortex interaction. Due to the reduced aerodynamic loading, the tip clearance vortex passes the shock without significant deceleration but shows some great fluctuation in terms of vortex strength. As the compressor is throttled to near stall, the tip clearance vortex eventually reaches the leading edge of the adjacent blade. It can be suggested that as an result, spill forward and so-called “self-induced vortex-oscillation” occurs. A phase-lock of both of these phenomena might be the trigger for a spike-type disturbance of the flow-field. The investigation underpins the great importance of the unsteady flow phenomena at near stall. For a thorough understanding of the flow features at the stability limit of a compressor, which is the basis of any effort to increase the operation range, special attention has to be paid to the unsteadiness of the flow in both experimental and numerical work. To study the mechanism of stall inception it might even be necessary to analyze the flow field around the whole annulus, as there appears to be significant interaction of the flow between neighboring passages.


Author(s):  
Dominik Schlüter ◽  
Robert P. Grewe ◽  
Fabian Wartzek ◽  
Alexander Liefke ◽  
Jan Werner ◽  
...  

Abstract Rotating stall is a non-axisymmetric disturbance in axial compressors arising at operating conditions beyond the stability limit of a stage. Although well-known, its driving mechanisms determining the number of stall cells and their rotational speed are still marginally understood. Numerical studies applying full-wheel 3D unsteady RANS calculations require weeks per operating point. This paper quantifies the capability of a more feasible quasi-2D approach to reproduce 3D rotating stall and related sensitivities. The first part of the paper deals with the validation of a numerical baseline the simplified model is compared to in detail. Therefore, 3D computations of a state-of-the-art transonic compressor are conducted. At steady conditions the single-passage RANS CFD matches the experimental results within an error of 1% in total pressure ratio and mass flow rate. At stalled conditions, the full-wheel URANS computation shows the same spiketype disturbance as the experiment. However, the CFD underpredicts the stalling point by approximately 7% in mass flow rate. In deep stall, the computational model correctly forecasts a single-cell rotating stall. The stall cell differs by approximately 21% in rotational speed and 18% in circumferential size from the experimental findings. As the 3D model reflects the compressor behaviour sufficiently accurate, it is considered valid for physical investigations. In the second part of the paper, the validated baseline is reduced in radial direction to a quasi-2D domain only resembling the compressor tip area. Four model variations regarding span-wise location and extent are numerically investigated. As the most promising model matches the 3D flow conditions in the rotor tip region, it correctly yields a single-cell rotating stall. The cell differs by only 7% in circumferential size from the 3D results. Due to the impeded radial migration in the quasi-2D slice, however, the cell exhibits an increased axial extent. It is assumed, that the axial expansion into the adjacent rows causes the difference in cell speed by approximately 24%. Further validation of the reduced model against experimental findings reveals, that it correctly reflects the sensitivity of circumferential cell size to flow coefficient and individual cell speed to compressor shaft speed. As the approach reduced the wall clock time by 92%, it can be used to increase the physical understanding of rotating stall at much lower costs.


Author(s):  
Daniel Möller ◽  
Maximilian Jüngst ◽  
Felix Holzinger ◽  
Christoph Brandstetter ◽  
Heinz-Peter Schiffer ◽  
...  

A flutter phenomenon was observed in a 1.5-stage configuration at the Darmstadt transonic compressor. This phenomenon is investigated numerically for different compressor speeds. The flutter occurs for the second eigenmode of the rotor blades and is caused by tip clearance flow which is able to pass through multiple rotor gaps at highly throttled operating points. The vibration pattern during flutter is accompanied by a pressure fluctuation pattern of the tip clearance flow which is interacting with the blade motion causing the aeroelastic instability. The velocity of the tip clearance flow fluctuation is about 50% of the blade tip speed for simulation and experiment and also matches the mean convective velocity inside the rotor gap. This is consistent for all compressor speeds. From this investigations, general guidelines are drawn which can be applied at an early stage during compressor design to evaluate the susceptibility to this kind of blade vibration.


2002 ◽  
Vol 124 (3) ◽  
pp. 351-357 ◽  
Author(s):  
William B. Roberts ◽  
Albert Armin ◽  
George Kassaseya ◽  
Kenneth L. Suder ◽  
Scott A. Thorp ◽  
...  

Aircraft fan and compressor blade leading edges suffer from atmospheric particulate erosion that reduces aerodynamic performance. Recontouring the blade leading edge region can restore blade performance. This process typically results in blades of varying chord length. The question therefore arises as to whether performance of refurbished fans and compressors could be further improved if blades of varying chord length are installed into the disk in a certain order. To investigate this issue the aerodynamic performance of a transonic compressor rotor operating with blades of varying chord length was measured in back-to-back compressor test rig entries. One half of the rotor blades were the full nominal chord length while the remaining half of the blades were cut back at the leading edge to 95% of chord length and recontoured. The rotor aerodynamic performance was measured at 100, 80, and 60% of design speed for three blade installation configurations: nominal-chord blades in half of the disk and short-chord blades in half of the disk; four alternating quadrants of nominal-chord and short-chord blades; nominal-chord and short-chord blades alternating around the disk. No significant difference in performance was found between configurations, indicating that blade chord variation is not important to aerodynamic performance above the stall chord limit if leading edges have the same shape. The stall chord limit for most civil aviation turbofan engines is between 94–96% of nominal (new) blade chord.


2003 ◽  
Vol 9 (6) ◽  
pp. 385-391
Author(s):  
Jörg Bergner ◽  
Dietmar K. Hennecke ◽  
Martin Hoeger ◽  
Karl Engel

For Darmstadt University of Technology's axial singlestage transonic compressor rig, a new three-dimensional aft-swept rotor was designed and manufactured at MTU Aero Engines in Munich, Germany. The application of carbon fiber–reinforced plastic made it possible to overcome structural constraints and therefore to further increase the amount of lean and sweep of the blade. The aim of the design was to improve the mechanical stability at operation that is close to stall.To avoid the hazard of rubbing at the blade tip, which is found especially at off-design operating conditions close to the stability limit of the compression system, aft-sweep was introduced together with excessive backward lean.This article reports an investigation of the impact of various amounts of lean on the aerodynamic behavior of the compressor stage on the basis of steady-state Navier-Stokes simulations. The results indicate that high backward lean promotes an undesirable redistribution of mass flow and gives rise to a basic change in the shock pattern, whereas a forward-leaning geometry results in the development of a highly back-swept shock front. However, the disadvantage is a decrease in shock strength and efficiency.


Author(s):  
H. Yang ◽  
D. Nuernberger ◽  
E. Nicke ◽  
A. Weber

A conservative mixed-cell approach of second-order accuracy is presented and applied to investigate the mechanisms of a self-recirculating casing treatment coupled with a transonic compressor rotor. The mixed cell is a computational cell that may show up at the zonal interface boundary, the face of which is partially solid and partially fluid, if the azimuthal open area of casing treatment does not fully contact with the whole annulus of blade passage. The mixed-cell approach is essentially an extension of the conservative zonal approach by incorporating special mixed-cell handling at the zonal interface and it allows a great flexibility to the grid generation for the patched zones with the best grid topology. The mixed-cell approach is extremely useful for solving the unsteady interaction problems within turbomachinery and its application for simulating the coupled flow through the rotor and the casing treatment is reported. The calculated results and analysis reveal an effective stall margin extension of the casing treatment herein by weakening or even destroying the tip leakage vortex, and expose the different tip flow topologies between the cases with the casing treatment and with the untreated smooth wall. It is found that the casing treatment only slightly decreases the overall efficiency at the design point, but it is beneficial to the overall efficiency at the off-design operating conditions and it can improve the inflow conditions to the downstream stator blade row as well.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 68 ◽  
Author(s):  
Radoslaw Przysowa ◽  
Peter Russhard

Complex blade responses such as a rotating stall or simultaneous resonances are common in modern engines and their observation can be a challenge even for state-of-the-art tip-timing systems and trained operators. This paper analyses forced vibrations of axial compressor blades, measured during the bench tests of the SO-3 turbojet. In relation to earlier studies conducted in Poland with a small number of sensors, a multichannel tip-timing system let us observe simultaneous responses or higher-order modes. To find possible symptoms of a failure, blade responses in a healthy and unhealthy engine configuration with an inlet blocker were studied. The used analysis methods covered all-blade spectrum and the circumferential fitting of blade deflections to the harmonic oscillator model. The Pearson coefficient of correlation between the measured and predicted tip deflection is calculated to evaluate fitting results. It helps to avoid common operator mistakes and misinterpreting the results. The proposed modal solver can track the vibration frequency and adjust the engine order on the fly. That way, synchronous and asynchronous vibrations are observed and analysed together with an extended variant of least squares. This approach saves a lot of work related to configuring the conventional tip-timing solver.


Sign in / Sign up

Export Citation Format

Share Document