Experimental and Numerical Development of a Dynamic Clearance Seal for Steam Turbine Application

Author(s):  
Andrew Messenger ◽  
Richard Williams ◽  
Grant Ingram ◽  
Simon Hogg ◽  
Stacie Tibos ◽  
...  

This paper presents a series of experiments on the Aerostatic Seal, a dynamic clearance seal for steam turbine application first described at the 2015 ASME Turbo Expo (Paper Number GT2015-43471). This dynamic clearance seal moves with rotor excursions and so has the potential to deliver a smaller clearance than traditional seals. The concept is an extension of the retractable seal design which is widely used in existing steam turbines. The experimental program was carried out in a low cost static test facility using an aerostatic seal design. The seal exhibited a dynamic clearance response and will therefore respond to rotor excursions. 3D CFD was also used to aid the understanding of flow features not captured by the analytical design tool. Adjustments to both the design process and to future seal designs are proposed in the body of the paper. This paper therefore describes an experimental proof of concept for the aerostatic seal and paves the way for future development in rotating facilities.

Author(s):  
Andrew Messenger ◽  
Richard Williams ◽  
Grant Ingram ◽  
Simon Hogg ◽  
Stacie Tibos ◽  
...  

The successful demonstration of the “Aerostatic Seal” in a half scale rotating facility is described in this paper. The Aerostatic seal is a novel dynamic clearance seal specifically designed for steam turbine secondary gas path applications. The seal responds to radial rotor excursions, so a reduced clearance can be maintained compared to conventional labyrinth seal without damage to the seal. This enables increased turbine performance through reduced leakage and increased tolerance of turbine transient events typically found during start up. The seal is an extension of the existing retractable seal design already deployed in commercial steam turbines. The seal was tested in the Durham Rotating Seals Rig, which was developed specifically to test this device. The rig featured a rotor designed to run with large eccentricities to model high speed radial rotor excursions, and the seal was instrumented to measure the real time seal response to the rotor. The experimental campaign has conclusively demonstrated the ability of the seal to dynamically respond to the rotor position. The key result is that the seal is able to track the rotor position at high speed, and hence maintain a mean seal clearance that is lower than the rotor eccentricity. Overall this work marks a key milestone in the development of the Aerostatic Seal, and leads the way to testing in a steam environment and application in steam turbine plant.


Author(s):  
Juri Bellucci ◽  
Federica Sazzini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
...  

This paper focuses on the use of the CFD for improving a steam turbine preliminary design tool. Three-dimensional RANS analyses were carried out in order to independently investigate the effects of profile, secondary flow and tip clearance losses, on the efficiency of two high-pressure steam turbine stages. The parametric study included geometrical features such as stagger angle, aspect ratio and radius ratio, and was conducted for a wide range of flow coefficients to cover the whole operating envelope. The results are reported in terms of stage performance curves, enthalpy loss coefficients and span-wise distribution of the blade-to-blade exit angles. A detailed discussion of these results is provided in order to highlight the different aerodynamic behavior of the two geometries. Once the analysis was concluded, the tuning of a preliminary steam turbine design tool was carried out, based on a correlative approach. Due to the lack of a large set of experimental data, the information obtained from the post-processing of the CFD computations were applied to update the current correlations, in order to improve the accuracy of the efficiency evaluation for both stages. Finally, the predictions of the tuned preliminary design tool were compared with the results of the CFD computations, in terms of stage efficiency, in a broad range of flow coefficients and in different real machine layouts.


1977 ◽  
Vol 99 (4) ◽  
pp. 608-616 ◽  
Author(s):  
K. L. Bekofske ◽  
R. E. Sheer ◽  
J. C. F. Wang

There is evidence that measurements of fan-rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passing frequency than that measured during flight. An experimental program was carried out to investigate this discrepancy. Inlet ground vortices and large-scale inlet turbulence were generated intentionally in an anechoic test chamber. Far-field acoustic measurements and inlet flow field hot film mappings of a fan rotor were then carried out to study the influence of such inlet disturbances at a static test facility. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.


Author(s):  
James Spelling ◽  
Markus Jo¨cker ◽  
Andrew Martin

Steam turbines in solar thermal power plants experience a much greater number of starts than those operating in base-load plants. In order to preserve the lifetime of the turbine whilst still allowing fast starts, it is of great interest to find ways to maintain the turbine temperature during idle periods. A dynamic model of a solar steam turbine has been elaborated, simulating both the heat conduction within the body and the heat exchange with the gland steam, main steam and the environment, allowing prediction of the temperatures within the turbine during off-design operation and standby. The model has been validated against 96h of measured data from the Andasol 1 power plant, giving an average error of 1.2% for key temperature measurements. The validated model was then used to evaluate a number of modifications that can be made to maintain the turbine temperature during idle periods. Heat blankets were shown to be the most effective measure for keeping the turbine casing warm, whereas increasing the gland steam temperature was most effective in maintaining the temperature of the rotor. By applying a combination of these measures the dispatchability of the turbine can be improved significantly: electrical output can be increased by up to 9.5% after a long cool-down and up to 9.8% after a short cool-down.


Author(s):  
Ilias Bosdas ◽  
Michel Mansour ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari ◽  
Shigeki Senoo

The largest share of electricity production worldwide belongs to steam turbines. However, the increase of renewable energy production has led steam turbines to operate under part load conditions and increase in size. As a consequence long rotor blades will generate a relative supersonic flow field at the inlet of the last rotor. This paper presents a unique experiment work that focuses at the top 30% of stator exit in the last stage of an LP steam turbine test facility with coarse droplets and high wetness mass fraction under different operating conditions. The measurements were performed with two novel fast response probes. A fast response probe for three dimensional flow field wet steam measurements and an optical backscatter probe for coarse water droplet measurements ranging from 30 up to 110μm in diameter. This study has shown that the attached bow shock at the rotor leading edge is the main source of inter blade row interactions between the stator and rotor of the last stage. In addition, the measurements showed that coarse droplets are present in the entire stator pitch with larger droplets located at the vicinity of the stator’s suction side. Unsteady droplet measurements showed that the coarse water droplets are modulated with the downstream rotor blade-passing period. This set of time-resolved data will be used for in-house CFD code development and validation.


2000 ◽  
Author(s):  
Lawrence D. Willey ◽  
James R. Maughan ◽  
J. Michael Hill ◽  
Dennis J. Walsh

Abstract The worldwide demand for electricity is continually increasing. Deregulation in the power generation business is driving rapid changes in the global energy market. This results in higher premiums on steam turbine efficiency and opportunities to structure several new Steam Turbine products to meet these challenging requirements. The “Dense Pack” high pressure section replacement and offering is one of the newest advanced designs to address these needs by delivering more power for the least amount of fuel. The intense competition to serve the electric power utility industry combined with the drive for new product introductions to be of the highest development life-cycle quality demands that verification of performance benefits be established very early in the new product development process. To answer this and establish pre-field installation credibility with customers, a new multi-stage Steam Turbine Test Vehicle (STTV) has been designed and constructed. The turbine faithfully models a typical, 4-admission, large utility steam turbine and preserves geometric and flow similarity while operating at reduced pressure. The basic train is comprised of a nominal 3.5 MW (4700 hp) test turbine, a 5:1 speed reducing load gear, and two tandem 3.0 MW (4000 hp) dynamometers. The thermodynamic cycle is straight through superheated steam entering the turbine through a turbine bowl pressure regulator control valve and exhausted to the atmosphere via a back pressure control valve and roof-mounted silencer. A rigorous Design for Six Sigma (DFSS) process was used to establish the test turbine facility and to ensure all of the new product program objectives were met. A detailed description of the facility is given with discussion of the major sub-systems, prototypical model hardware, unique steampath instrumentation, and the test procedures used to ensure accurate, repeatable data. The timeline for accomplishing the design, construction, and early testing is chronicled. Key test results are summarized including baseline testing to validate the new test facility, testing of the “Dense Pack” aerodynamic design methodology for power generation steam turbines, and the performance evaluation of developments such as new shaft, advanced aerodynamics and bucket tip seals. In addition to developing the new design technologies and verifying their predicted efficiency increases, the Steam Turbine Test Vehicle is key for conducting Form-Fit-Function studies. Model hardware built using the standard manufacturing methods and materials intended for production parts provides invaluable insight ahead of finalizing production specifications. New features such as advanced seals and Integral Cover Buckets (ICB) benefit from being more thoroughly understood in terms of assembly and procedures ahead of new product production.


Author(s):  
Lorenzo Cosi ◽  
Jonathon Slepski ◽  
Steven DeLessio ◽  
Michele Taviani ◽  
Amir Mujezinovic´

New low pressure (LP), stages for variable speed, mechanical drive and geared power generation steam turbines have been developed. The new blade and nozzle designs can be applied to a wide range of turbine rotational speeds and last stage blade annulus areas, thus forming a family of low pressure stages—High Speed (HS) blades and nozzles. Different family members are exact scales of each other and the tip speeds of the corresponding blades within the family are identical. Thus the aeromechanical and aerodynamic characteristics of the individual stages within the family are identical as well. Last stage blades and nozzles have been developed concurrently with the three upstream stages, creating optimised, reusable low pressure turbine sections. These blades represent a step forward in improving speed, mass flow capability, reliability and aerodynamic efficiency of the low pressure stages for the industrial steam turbines. These four stages are designed as a system using the most modern design tools applied on Power Generation and Aircraft Engines turbo-machineries. The aerodynamic performance of the last three stage of the newly designed group will be verified in a full-scale test facility. The last stage blade construction incorporates a three hooks, axial entry dovetail with improved load carrying capability over other blade attachment methods. The next to the last stage blade also uses a three hooks axial entry dovetail, while the two front stage blades employ internal tangential entry dovetails. The last and next to the last stage blades utilize continuous tip coupling via implementation of integral snubber cover while a Z-lock integral cover is employed for the two upstream stages. Low dynamic strains at all operating conditions (off and on resonance speeds) will be validated via steam turbine testing at realistic steam conditions (steam flows, temperatures and pressures). Low load, high condenser pressure operation will also be verified using a three stage test turbine operated in the actual steam conditions as well. In addition, resonance speed margins of the four stages have been verified through full-scale wheel box tests in the vacuum spin cell, thus allowing the application of these stages to Power Generation applications. Stator blades are produced with a manufacturing technology, which combines full milling and electro-discharge machining. This process allows machining of the blades from an integral disc, and thus improving uniformity of the throat distribution. Accuracy of the throat distribution is also improved when compared to the assembled or welded stator blade technology. This paper will discuss the aerodynamic and aeromechanical design, development and testing program completed for this new low pressure stages family.


Author(s):  
Ilias Bosdas ◽  
Michel Mansour ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari ◽  
Shigeki Senoo

The largest share of electricity production worldwide belongs to steam turbines. However, the increase of renewable energy production has led steam turbines to operate under part load conditions and increase in size. As a consequence, long rotor blades will generate a relative supersonic flow field at the inlet of the last rotor. This paper presents a unique experiment work that focuses at the top 30% of stator exit in the last stage of an low pressure (LP) steam turbine test facility with coarse droplets and high wetness mass fraction under different operating conditions. The measurements were performed with two novel fast response probes: a fast response probe for three-dimensional flow field wet steam measurements and an optical backscatter probe for coarse water droplet measurements ranging from 30 μm up to 110 μm in diameter. This study has shown that the attached bow shock at the rotor leading edge is the main source of interblade row interactions between the stator and rotor of the last stage. In addition, the measurements showed that coarse droplets are present in the entire stator pitch with larger droplets located at the vicinity of the stator's suction side. Unsteady droplet measurements showed that the coarse water droplets are modulated with the downstream rotor blade-passing period. This set of time-resolved data will be used for in-house computational fluid dynamics (CFD) code development and validation.


2018 ◽  
Vol 20 ◽  
pp. 56-64 ◽  
Author(s):  
Martin Nesládek ◽  
Josef Jurenka ◽  
Michal Bartošák ◽  
Milan Růžička ◽  
Maxim Lutovinov ◽  
...  

Increasing demands on the flexibility of steam turbines due to the use of renewable energy sources substantially alters the fatigue strength requirements of components of these devices. Rapid start-ups as well as the increased number of the load cycles applied to the turbines must be handled by design methodologies. The goal of the work presented in this paper was to provide a computational framework applicable to the thermo-mechanical fatigue (TMF) prediction of steam turbine shafts. The so-called Damage Operator Approach by Nagode et al. has been implemented to the software codes and applied to fatigue analysis of the thermo-mechanical material response computed numerically by the finite element analysis. Experimental program conducted in order to identify the material thermo-mechanical behavior and to verify numerical simulations is introduced in the paper. Some results of TMF prediction of a sample steam turbine shaft are shown.


Author(s):  
James Spelling ◽  
Markus Jöcker ◽  
Andrew Martin

Steam turbines in solar thermal power plants experience a much greater number of starts than those operating in baseload plants. In order to preserve the lifetime of the turbine while still allowing fast starts, it is of great interest to find ways to maintain the turbine temperature during idle periods. A dynamic model of a solar steam turbine has been elaborated, simulating both the heat conduction within the body and the heat exchange with the gland steam, main steam and the environment, allowing prediction of the temperatures within the turbine during off-design operation and standby. The model has been validated against 96 h of measured data from the Andasol 1 power plant, giving an average error of 1.2% for key temperature measurements. The validated model was then used to evaluate a number of modifications that can be made to maintain the turbine temperature during idle periods. Heat blankets were shown to be the most effective measure for keeping the turbine casing warm, whereas increasing the gland steam temperature was most effective in maintaining the temperature of the rotor. By applying a combination of these measures the dispatchability of the turbine can be improved significantly: electrical output can be increased by up to 9.5% after a long cooldown and up to 9.8% after a short cooldown.


Sign in / Sign up

Export Citation Format

Share Document