Effects of Inlet Swirl on Endwall Film Cooling in Neighboring Vane Passages
The distribution of film cooling effectiveness of endwall film-cooling holes is considered to be periodic between neighboring high pressure turbine passages in most cascade experiments. In reality, because of the difference in the number of combustors and vanes, the flow fields of neighboring passages are completely different. The secondary flow, especially the passage vortex, is dominated by the upstream inlet rotating flow whose relative flow direction is the reverse between the neighboring vane passages. Specifying the direction of rotation to simulate inlet swirl introduces new challenges in film-cooling design. The present experiment compares five groups of endwall film-cooling with anticlockwise rotating flows at inlet at different clocking positions, and the film-cooling effect is analyzed to investigate the effects of inlet rotating flow. The inlet flow condition of neighboring passages is simulated by switching the position of a swirler fan. Hence, different rotating inlet flow conditions in different positions are achieved. The GE-E3 airfoil was used in the cascade rig, with a scaled-up factor of 1.95. The inlet Reynolds number is 1.48 × 105 and the Mach number is 0.07. The effects of the blowing ratio and relative positions of the swirler are investigated in the experiment. Adiabatic film-cooling effectiveness is probed by using pressure-sensitive paint (PSP). The coolant is simulated by nitrogen with which a density ratio of around 1.0 can be achieved. Fan-shaped film-cooling holes are introduced into the endwall surface as well as trailing edge discharge holes. The cooling performance of the combustor-turbine gap leakage flow is not considered. Fan-shaped film-cooling holes are introduced into the endwall surface as well as upstream slot. The cooling performance of the combustor-turbine gap leakage flow is considered in this case. A Pair of nozzle guide vane (NGV) passages are investigated simultaneously by which the film cooling effectiveness can be compared for the same case at the endwall surface. The inlet rotating flow is simulated by an upstream swirler, with five relative positions along the pitchwise direction. According to the experimental results, the inlet rotating flow dominates the film cooling effectiveness distribution at the endwall. The averaged film cooling effectiveness changes substantially with the change in swirler position. The rotating flow at the endwall region mainly interacts with the main flow to modify incidence angle. The influence of the inlet rotating flow is more obvious at the upstream portion. Meanwhile the downstream portion is not as sensitive to rotating flow as the upstream portion.