A Low Cycle Fatigue Life Prediction Model of Single Crystal Nickel-Based Superalloys Using Critical Plane Approach Combined With Crystallographic Slip Theory

Author(s):  
Lijuan Mu ◽  
Xuezhi Dong ◽  
Qing Gao ◽  
Yongsheng Tian ◽  
Chunqing Tan

The anisotropy is the most remarkable characteristic for single crystal nickel-based superalloys, which makes fatigue behavior and life prediction highly correlate with the crystallographic orientation. Based on critical plane approach and preferred crystallographic slip mechanism, an anisotropic LCF life model is proposed to account for orientation-dependent fatigue life in this paper. In addition, the effects of the mean stress and stress-weakening caused by asymmetric loading are also considered. The critical plane is determined by searching for 30 potential slip systems. Moreover, the slip plane with the maximum resolved shear stress amplitude in the crystallographic microstructure of the single crystal nickel-based superalloy is chosen as the critical plane. The LCF test data are utilized to obtain the regression equation by multiple linear fitting method. The presented LCF life model is applicable for more complex stress state and has higher prediction accuracy than the CDY model.

2018 ◽  
Vol 53 (4) ◽  
pp. 197-209 ◽  
Author(s):  
Xiao-Wei Wang ◽  
De-Guang Shang ◽  
Yu-Juan Sun

A weight function method based on strain parameters is proposed to determine the critical plane in low-cycle fatigue region under both constant and variable amplitude tension–torsion loadings. The critical plane is defined by the weighted mean maximum absolute shear strain plane. Combined with the critical plane determined by the proposed method, strain-based fatigue life prediction models and Wang-Brown’s multiaxial cycle counting method are employed to predict the fatigue life. The experimental critical plane orientation and fatigue life data under constant and variable amplitude tension–torsion loadings are used to verify the proposed method. The results show that the proposed method is appropriate to determine the critical plane under both constant and variable amplitude loadings.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


Author(s):  
Rongqiao Wang ◽  
Kanghe Jiang ◽  
Fulei Jing ◽  
Dianyin Hu ◽  
Jun Song

A critical plane approach in combination with principal component analysis (PCA) for determining dominant damage factors (DDFs) was developed for single crystal nickel superalloys at elevated temperature. Maximum resolved shear stress (RSS), maximum slip rate and other 2 mesoscopic parameters on the critical plane, defined as the preferential slip plane, were selected as damage parameters. Correlation analysis results indicated that there were strong correlations (i.e. multicollinearity) among the selected parameters. To address this issue, PCA was performed to eliminate the effect of multicollinearity and the DDFs were determined as well. Based on the DDFs a life model was proposed and then validated by the fatigue experimental results. Most of the experimental lives are within the factor three of the predicted ones. The life model has a relatively simple form with reliable constants which facilitates the application in industry design.


2011 ◽  
Vol 361-363 ◽  
pp. 1669-1672
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The low cycle fatigue behavior was experimentally studied with the 3-dimension notched LD8 aluminum alloy specimens at 300°C. The 3- dimension stress-strain responses of specimens were calculated by means of the program ADINA. The multiaxial fatigue life prediction was carried out according to von Mises’s equivalent theory. The results from the prediction showed that the equivalent strain range can be served as the valid mechanics for predicting multiaxial high temperature and low cyclic fatigue life.


2019 ◽  
Vol 28 (9) ◽  
pp. 1367-1392 ◽  
Author(s):  
Xiao-Wei Wang ◽  
De-Guang Shang ◽  
Yu-Juan Sun ◽  
Xiao-Dong Liu

Based on the critical plane determined by the weight function method, two algorithms for multiaxial cycle counting method are proposed by modifying the rainflow and range cycle counting methods. The proposed two algorithms can be applied to multiaxial random loading, and be suitable to any critical plane-based fatigue life prediction models, since the counted cycles or reversals are represented by the start time and end time. The proposed two algorithms are used to predict multiaxial fatigue life by the experimental data of 7075-T651 aluminum alloy, En15R steel and 7050-T7451 aluminum alloy conducted under multiaxial random loading in both high-cycle and low-cycle fatigue region. The life prediction results are in good agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document