Boundary Layer Flashback Model for Hydrogen Flames in Confined Geometries Including the Effect of Adverse Pressure Gradient

Author(s):  
Ólafur H. Björnsson ◽  
Sikke A. Klein ◽  
Joeri Tober

Abstract The combustion properties of hydrogen make premixed hydrogen-air flames very prone to boundary layer flashback. This paper describes the improvement and extension of a boundary layer flashback model from Hoferichter [1] for flames confined in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpressure of the flame at flashback by 4–5x. By simplifying the Lewis number dependent flame speed computation and by applying a generalized version of Stratford’s flow separation criterion [2], the prediction accuracy is improved significantly. The effect of adverse pressure gradient flow on the flashback limits in 2° and 4° diffusers is also captured adequately by coupling the model to flow simulations and taking into account the increased flow separation tendency in diffuser flow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.

Author(s):  
Ólafur H. Björnsson ◽  
Sikke Klein ◽  
Joeri Tober

Abstract The combustion properties of hydrogen make premixed hydrogen-air ?ames very prone to boundary layer ?ashback. This paper describes the improvement and extension of a bound- ary layer ?ashback model from Hoferichter [1] for ?ames con- ?ned in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpres- sure of the ?ame at ?ashback by 4-5x. By simplifying the Lewis number dependent ?ame speed computation and by applying a generalized version of Stratford's ?ow separation criterion [2], the prediction accuracy is improved signi?cantly. The effect of adverse pressure gradient ?ow on the ?ashback limits in 2? and 4? diffusers is also captured adequately by coupling the model to ?ow simulations and taking into account the increased ?ow sep- aration tendency in diffuser ?ow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.


1994 ◽  
Vol 272 ◽  
pp. 319-348 ◽  
Author(s):  
Per Egil Skåre ◽  
Per-åge Krogstad

The experimental results for an equilibrium boundary layer in a strong adverse pressure gradient flow are reported. The measurements show that similarity in the mean flow and the turbulent stresses has been achieved over a substantial streamwise distance where the skin friction coefficient is kept at a low, constant level. Although the Reynolds stress distribution across the layer is entirely different from the flow at zero pressure gradient, the ratios between the different turbulent stress components were found to be similar, showing that the mechanism for distributing the turbulent energy between the different components remains unaffected by the mean flow pressure gradient. Close to the surface the gradient of the mixing length was found to increase from Kl ≈ 0.41 to Kl ≈ 0.78, almost twice as high as for the zero pressure gradient case. Similarity in the triple correlations was also found to be good. The correlations show that there is a considerable diffusion of turbulent energy from the central part of the boundary layer towards the wall. The diffusion mechanism is caused by a second peak in the turbulence production, located at y/δ ≈ 0.45. This production was for the present case almost as strong as the production found near the wall. The energy budget for the turbulent kinetic energy also shows that strong dissipation is not restricted to the wall region, but is significant for most of the layer.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Hui Hu ◽  
Zifeng Yang

An experimental study was conducted to characterize the transient behavior of laminar flow separation on a NASA low-speed GA (W)-1 airfoil at the chord Reynolds number of 70,000. In addition to measuring the surface pressure distribution around the airfoil, a high-resolution particle image velocimetry (PIV) system was used to make detailed flow field measurements to quantify the evolution of unsteady flow structures around the airfoil at various angles of attack (AOAs). The surface pressure and PIV measurements clearly revealed that the laminar boundary layer would separate from the airfoil surface, as the adverse pressure gradient over the airfoil upper surface became severe at AOA≥8.0deg. The separated laminar boundary layer was found to rapidly transit to turbulence by generating unsteady Kelvin–Helmholtz vortex structures. After turbulence transition, the separated boundary layer was found to reattach to the airfoil surface as a turbulent boundary layer when the adverse pressure gradient was adequate at AOA<12.0deg, resulting in the formation of a laminar separation bubble on the airfoil. The turbulence transition process of the separated laminar boundary layer was found to be accompanied by a significant increase of Reynolds stress in the flow field. The reattached turbulent boundary layer was much more energetic, thus more capable of advancing against an adverse pressure gradient without flow separation, compared to the laminar boundary layer upstream of the laminar separation bubble. The laminar separation bubble formed on the airfoil upper surface was found to move upstream, approaching the airfoil leading edge as the AOA increased. While the total length of the laminar separation bubble was found to be almost unchanged (∼20% of the airfoil chord length), the laminar portion of the separation bubble was found to be slightly stretched, and the turbulent portion became slightly shorter with the increasing AOA. After the formation of the separation bubble on the airfoil, the increase rate of the airfoil lift coefficient was found to considerably degrade, and the airfoil drag coefficient increased much faster with increasing AOA. The separation bubble was found to burst suddenly, causing airfoil stall, when the adverse pressure gradient became too significant at AOA>12.0deg.


Author(s):  
Brian M. Holley ◽  
Larry W. Hardin ◽  
Gregory Tillman ◽  
Ray-Sing Lin ◽  
Jongwook Joo

A combined experimental and analytical modeling effort has been carried out to measure the skin friction response of the boundary layer in high Reynolds number adverse pressure gradient flow. The experiment was conducted in the United Technologies Research Center (UTRC) Acoustic Research Tunnel, an ultra-low freestream turbulence facility capable of laminar boundary layer research. Boundary layer computational fluid dynamics and stability modeling were used to provide pre-test predictions, as well as to aid in interpretation of measured results. Measurements were carried out at chord Reynolds numbers 2–3 × 106, with the model set at multiple incidence angles to establish a range of relevant leading edge pressure gradients. The combination of pressure gradient and flight Reynolds number testing on a thin airfoil has produced a unique data set relevant to propulsion system turbomachinery.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Brian M. Holley ◽  
Larry W. Hardin ◽  
Gregory Tillman ◽  
Ray-Sing Lin ◽  
Jongwook Joo

Abstract A combined experimental and analytical modeling effort has been carried out to measure the skin friction response of the boundary layer in high Reynolds number adverse pressure gradient flow. The experiment was conducted in the United Technologies Research Center (UTRC) Acoustic Research Tunnel, an ultra-low freestream turbulence facility capable of laminar boundary layer research. Boundary layer computational fluid dynamics and stability modeling were used to provide pre-test predictions, as well as to aid in interpretation of measured results. Measurements were carried out at chord Reynolds numbers 2–3 × 106, with the model set at multiple incidence angles to establish a range of relevant leading edge pressure gradients. The combination of pressure gradient and flight Reynolds number testing on a thin airfoil has produced a unique data set relevant to propulsion system turbomachinery.


1951 ◽  
Vol 18 (1) ◽  
pp. 95-100
Author(s):  
Donald Ross ◽  
J. M. Robertson

Abstract As an interim solution to the problem of the turbulent boundary layer in an adverse pressure gradient, a super-position method of analysis has been developed. In this method, the velocity profile is considered to be the result of two effects: the wall shear stress and the pressure recovery. These are superimposed, yielding an expression for the velocity profiles which approximate measured distributions. The theory also leads to a more reasonable expression for the wall shear-stress coefficient.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yanfeng Zhang ◽  
Shuzhen Hu ◽  
Ali Mahallati ◽  
Xue-Feng Zhang ◽  
Edward Vlasic

This work, a continuation of a series of investigations on the aerodynamics of aggressive interturbine ducts (ITD), is aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries. A systematic experimental and computational study was carried out by varying duct outlet-to-inlet area ratios (ARs) and mean rise angles while keeping the duct length-to-inlet height ratio, Reynolds number, and inlet swirl constant in all four geometries. The flow structures within the ITDs were found to be dominated by the boundary layer separation and counter-rotating vortices in both the casing and hub regions. The duct mean rise angle determined the severity of adverse pressure gradient in the casing's first bend, whereas the duct AR mainly governed the second bend's static pressure rise. The combination of upstream wake flow and the first bend's adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices. At high mean rise angle, the separation became stronger at the casing's first bend and moved farther upstream. At high ARs, a two-dimensional separation appeared on the casing and resulted in increased loss. Pressure loss penalties increased significantly with increasing duct mean rise angle and AR.


Sign in / Sign up

Export Citation Format

Share Document