The STEP 10 MWe sCO2 Pilot Demonstration Status Update

2021 ◽  
Author(s):  
John Marion ◽  
Brian Lariviere ◽  
Aaron McClung ◽  
Jason Mortzheim

Abstract The Gas Technology Institute (GTI®), Southwest Research Institute® (SwRI®) and General Electric Global Research (GEGR) are executing the “STEP” [Supercritical Transformational Electric Power] project, to design, construct, commission, and operate an integrated and reconfigurable 10 MWe sCO2 [supercritical CO2] pilot plant test facility. The $122* million project is funded $84 million by the US DOE’s National Energy Technology Laboratory (NETL Award Number DE-FE0028979) and $38* million (*including building investment) by the team members, component suppliers and others interested in sCO2 technology. This paper provides an update on the project’s progress. The pilot facility is currently under construction at SwRI’s San Antonio, Texas, USA campus. Now well into Phase 2, a ground-breaking was held in October of 2018, and civil work and the construction of a dedicated 22,000 ft2 building is complete. Most major equipment is in fabrication or delivered to site. Efforts have already provided valuable project learnings for technology commercialization. This project is a significant step toward sCO2 cycle based power generation commercialization and is informing the performance, operability, and scale-up to commercial plants.

Author(s):  
Yaoxin Liu ◽  
Libin Yang ◽  
Mengxiang Fang ◽  
Guanyi Chen ◽  
Zhongyang Luo ◽  
...  

A new system using combined coal gasification and combustion has been developed for clean and high efficient utilization of coal. Following are the processes. The coal is first partially gasified and the produced fuel gas is then used for industrial purpose or as a fuel for a gas turbine. The char residue from the gasifier is burned in a circulating fluidized bed combustor to generate steam for power generation. For having the experimental investigation, a 1MW pilot plant test facility has been erected. Experiments on coal partial gasification with air, and recycle gas have been made on the 1 MW pilot plant test facility. The results show that, with air as gasification agent, the system can produce 4–5MJ/Nm3 low heating value dry gas and fuel conversion efficiency attains 50–70% in the gasifier, and residue 20–40% converted in the combustor and total conversion efficiency in the system is over 90%. In the gasifier, the carbon conversion efficiency increases with the bed temperature and the air blown temperature. CaCO3 has an effective effect for sulfur removal in the gasifier. The sulfur removal efficiency attains 85% with Ca/S molar ratio 2.5. The system can produce 12–14MJ/Nm3 middle heating value day gas by using high temperature circulation solid as heat carrier and recycle gas or steam as gasification media, but the fuel conversion efficiency only attain 30–40% in the gasifier and most of fuel energy is converted in the combustor. CaCO3 has an obvious effect on tar cracking and H2S removal. The sulfur removal efficiency attains 80% with Ca/S molar ratio 2.5.


1991 ◽  
Vol 23 (10-12) ◽  
pp. 1991-1999 ◽  
Author(s):  
S. Hashimoto ◽  
K. Nishimura ◽  
H. Iwabu ◽  
K. Shinabe

A pilot plant was built to get information on scale-up factors of composting plant of electron-beam disinfected sludge cake. The amount of sludge to be treated was about 500 kg/batch. A Cockcroft-Walton type of electron accelerator and a machine to make thin layer of sludge were used for sludge disinfection. The composting plant consisted of a mixer, a granulating machine, a fermenter with three screw-type mixing blades, and a conveyer system. Efficient composting could be realized also by the pilot plant, by controlling fermentation temperature in the optimum range, by controlling air flow rate and by frequent mixing in the fermenter. From an economic feasibility study based on the results of pilot plant test, capital cost and treatment cost for the process are expected to be lower than those for conventional one, when the treatment capacity of plant exceeds 50 ton/day.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Author(s):  
Pablo Cazenave ◽  
Ming Gao ◽  
Hans Deeb ◽  
Sean Black

The project “Development of an Industry Test Facility and Qualification Processes for in-line inspection (ILI) technology Evaluation and Enhancements” aims to expand knowledge of ILI technology performance and identify gaps where new technology is needed. Additionally, this project also aims to provide ILI technology developers, researchers and pipeline operators a continuing resource for accessing test samples with a range of pipeline integrity threats and vintages; and inline technology test facilities at the Technology Development Center (TDC) of Pipeline Research Council International, Inc. (PRCI), a PRCI managed facility available for future industry and PHMSA research projects. An ILI pull test facility was designed and constructed as part of this project based on industry state-of-the-art and opportunities for capability improvement. The major ILI technology providers, together with pipeline operator team members, reviewed the TDC sample inventory and developed a series of ILI performance tests illustrating one of multiple possible research objectives, culminating in 16-inch and 24-inch nominal diameter test strings. The ILI technology providers proposed appropriate inspection tools based on the types of the integrity threats in the test strings, a series of pull tests of the provided ILI tools were performed, and the technology providers delivered reports of integrity anomaly location and dimensions for performance evaluation. Quantitative measures of detection and sizing performance were confidentially disclosed to the individual ILI technology providers. For instances where ILI predictions were outside of claimed performance, the vendors were given a limited sample of actual defect data to enable re-analysis, thus demonstrating the potential for improved integrity assessment with validation measurements. In this paper, an evaluation of the ILI data obtained from repeated pull-through testing on the 16 and 24-inch pipeline strings at the TDC is performed. The resulting data was aligned, analyzed, and compared to truth data and the findings of the evaluation are presented.


Author(s):  
Huimin Yin ◽  
Wenfu Wu ◽  
Yan Xu ◽  
Jianpeng Dou ◽  
Shangyuan Sun ◽  
...  

Author(s):  
Sudipta De ◽  
Mehrzad Kaiadi ◽  
Mohsen Assadi

Biomass cofiring in existing coal fired boilers has emerged as one of the most prospective technologies in order to address voluntary reduction of green house gases and other emissions, potential portfolio standards, customer service etc. within the context of deregulations. Pilot plant test results have confirmed the potential of biomass cofiring with coal for commercial use. However, being a new and developing technology, there is hardly any tool available for estimation of variation in performance of an existing coal fired boiler due to its retrofitting for biomass cofiring. A predicting tool is developed to estimate this performance variation using available information of pilot plant test results in literature or from data of plant operating with biomass. In order to incorporate future available information, this is developed in a flexible environment of Model Development Kit (MDK) of IPSEpro, a commercially available heat and mass balance program. Development of the models for this predicting tool as well as its limitations and possible future improvement has been discussed in this paper. Some results regarding estimation of change in efficiency, emissions and associated costs using this developed predicting tool has been presented.


1977 ◽  
Vol 34 (10) ◽  
pp. 612-615
Author(s):  
V. V. Vershinina ◽  
I. E. Rogovets ◽  
V. M. Nezel'skii

Sign in / Sign up

Export Citation Format

Share Document