Rotating Mechanism of Diffuser Stall in a Centrifugal Compressor With Vaneless Diffuser

2021 ◽  
Author(s):  
Nobumichi Fujisawa ◽  
Yuki Agari ◽  
Yoshifumi Yamao ◽  
Yutaka Ohta

Abstract The rotating mechanism of diffuser stall in a centrifugal compressor with a vaneless diffuser is investigated via experimental and computational analyses. Diffuser stall is generated as the mass flow rate decreases, and it rotates at 25%–30% of the impeller rotational speed. First, a diffuser stall cell emerges at 180° from the cutoff by the hub-side boundary layer separation. Subsequently, the diffuser stall cell develops further owing to boundary layer separation accumulation and an induced low-velocity area. The low-velocity region forms a blockage across the diffuser passage span. The diffuser stall cell expands owing to the boundary layer separations that occurred on the shroud and hub wall by turns. Finally, the diffuser stall cell vanishes when it passes the cutoff because mass flow recovery occurred. Furthermore, the static pressure ahead of the rotating stall decreases because of the merging of the impeller discharge flow and the reverse flow from the casing. Accordingly, a reverse flow occurred owing to the evolution of the separation vortex at the diffuser exit. In addition, the flow angle decreases by the merging of the impeller discharge flow and reverse flow from the casing. Therefore, boundary layer separations start occurring on the shroud and hub wall ahead of the stall cell. The rotating mechanism of the diffuser stall is induced by the reverse flow development and a decrease in the flow angle ahead of the stall cell.

Author(s):  
Hiroshi Miida ◽  
Kenta Tajima ◽  
Nobumichi Fujisawa ◽  
Yutaka Ohta

Abstract The unsteady diffuser stall behavior in a centrifugal compressor with a vaneless diffuser was investigated by experimental and computational analyses. The diffuser stall generated as the mass flow rate decreased. The diffuser stall cell rotated at 25–30% of the impeller rotational speed, with diffuser stall fluctuations observed at 180° from the cutoff. The diffuser stall fluctuation magnitude gradually increased near the cutoff. Based on diffuser inlet velocity measurements, the diffuser stall fluctuations generated near both the shroud and hub sides, and the diffuser stall appeared at 180° and 240° from the cutoff. According to the CFD analysis, the mass flow fluctuations at the diffuser exit showed a low mass flow region, rotating at approximately 25% of the impeller rotational speed. They began at 180° from the cutoff and developed as this region approached the cutoff. Therefore, the diffuser stall could be simulated by CFD analysis. First, the diffuser stall cell originated at 180° from the cutoff by interaction with boundary separation and impeller discharge vortex. Then, the diffuser stall cell further developed by boundary separation accumulation and the induced low velocity area, located at the stall cell center. The low velocity region formed a blockage across the diffuser passage span. The diffuser stall cell expanded in the impeller rotational direction due to boundary separation caused by a positive flow angle. Finally, the diffuser stall cell vanished when it passed the cutoff, because mass flow recovery occurred.


2020 ◽  
Vol 4 ◽  
pp. 190-201
Author(s):  
Nobumichi Fujisawa ◽  
Kenta Tajima ◽  
Hiroshi Miida ◽  
Yutaka Ohta

The generation mechanism of a diffuser stall in a centrifugal compressor with a vaneless diffuser was investigated by experimental and computational analyses. The diffuser stall generated as the mass flow rate decreased. The diffuser stall cell rotated at 25-30 % of the impeller rotational speed, with diffuser stall fluctuations observed at 180° from the cutoff. The diffuser stall fluctuation magnitude gradually increased near the cutoff. According to the CFD analysis, the mass flow fluctuations at the diffuser exit showed a low mass flow region, rotating at approximately 25% of the impeller rotational speed. They began at 180° from the cutoff and developed as this region approached the cutoff. Therefore, the diffuser stall could be simulated by CFD analysis. First, the diffuser stall cell originated at 180° from the cutoff by interaction with boundary separation and impeller discharge vortex. Then, the diffuser stall cell further developed by boundary separation accumulation and the induced low velocity area The low velocity region formed a blockage across the diffuser passage span. The diffuser stall cell expanded due to boundary separation caused by a positive flow angle. Finally, the diffuser stall cell vanished when it passed the cutoff, because mass flow recovery occurred.


Author(s):  
Talib Z. Farge ◽  
Mark W. Johnson

A comparison is made between the flow in two impellers, one with radially ending blades and one with blades backswept by 30°. The two impellers have identical inducers. Measurements are made of the three velocity components and total pressures across five measurement stations within each impeller. The flow in the backswept impeller is dominated by a counter-clockwise vortex which reduces the severity of the shroud boundary layer separation and hence leads to a higher impeller efficiency. The wake is consequently smaller in the backswept impeller but adopts a similar position on the shroud surface at the impeller exit. Analysis of the secondary flow generation reveals the mechanisms responsible for the differences in the flow fields in the two impellers.


2017 ◽  
Author(s):  
Arkady Zaryankin ◽  
Andrey Rogalev ◽  
Ivan Komarov ◽  
V. Kindra ◽  
S. Osipov

2021 ◽  
Vol 11 (6) ◽  
pp. 2593
Author(s):  
Yasir Al-Okbi ◽  
Tze Pei Chong ◽  
Oksana Stalnov

Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowing to reduce the level of turbulence–leading edge interaction noise radiation. Aerodynamically, after the mixing between the injected air and the incoming flow, a shear instability is likely to be triggered owing to the different flow directions. The resulting vortical flow will then propagate along the main flow direction across the aerofoil surface. These vortical flows generated indirectly owing to the leading edge blowing could also be effective to mitigate boundary layer separation at high angle of attack. The objectives of this paper are to validate these hypotheses, and combine the serration and blowing together on the leading edge to harvest further improvement on the aeroacoustics and aerodynamic performances. Results presented in this paper strongly indicate that leading edge blowing, which is an active flow control method, can indeed mimic and even enhance the bio-inspired leading edge serration effectively.


1968 ◽  
Vol 32 (2) ◽  
pp. 293-304 ◽  
Author(s):  
V. A. Sandborn ◽  
C. Y. Liu

An experimental and analytical study of the separation of a turbulent boundary layer is reported. The turbulent boundary-layer separation model proposed by Sandborn & Kline (1961) is demonstrated to predict the experimental results. Two distinct turbulent separation regions, an intermittent and a steady separation, with correspondingly different velocity distributions are confirmed. The true zero wall shear stress turbulent separation point is determined by electronic means. The associated mean velocity profile is shown to belong to the same family of profiles as found for laminar separation. The velocity distribution at the point of reattachment of a turbulent boundary layer behind a step is also shown to belong to the laminar separation family.Prediction of the location of steady turbulent boundary-layer separation is made using the technique employed by Stratford (1959) for intermittent separation.


Sign in / Sign up

Export Citation Format

Share Document