Hydrodynamics and Heat Convection From a Disk Facing a Uniform Flow

Volume 1 ◽  
2004 ◽  
Author(s):  
Abdullah Abbas Kendoush

Exact solutions of the equations of momentum and energy of a circular disk in a uniform incompressible flow directed along its axis of symmetry are obtained. Laminar, irrotational and inviscid flows were assumed. The solutions for the pressure distribution, drag coefficient and convective heat transfer of the disk are presented in explicit forms. Some peculiar fluid-dynamical behavior of the pressure distribution at low and high Reynolds numbers are revealed. The derived equations were agreeable with other numerical and analytical solutions and experimental data.

Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


1969 ◽  
Vol 36 (3) ◽  
pp. 598-607 ◽  
Author(s):  
T. Maxworthy

Flow around a sphere for Reynolds numbers between 2 × 105 and 6 × 104 has been observed by measuring the pressure distribution around a circle of longitude under a variety of conditions. These include the effects of laminar and turbulent boundary layer separation, tunnel blockage, various boundary layer trip arrangements and inserting an object to disrupt the unsteady, recirculation region behind the sphere.


1991 ◽  
Vol 233 ◽  
pp. 243-263 ◽  
Author(s):  
Chien-Cheng Chang ◽  
Ruey-Ling Chern

Impulsively started flow around a circular cylinder at various Reynolds numbers is studied by a deterministic hybrid vortex method. The key feature of the method consists in solving the viscous vorticity equation by interlacing a finite-difference method for diffusion and a vortex-in-cell method for convection. The vorticity is updated along the surface of the cylinder to satisfy the no-slip condition. The present method is basically different from previous applications of vortex methods, which are primarily in the context of random vortex algorithms. The Reynolds numbers of the flows under investigation range from 300 to 106. Numerical results are compared with analytical solutions at small times, and compared with finite-difference solutions and flow visualization results at relatively long times. Satisfactory agreement is found in the evolutions of the separation angles, wake lengths, surface pressure and drag coefficients, streamline patterns, and some velocities on the axis of symmetry behind the circular cylinder. The present hybrid vortex method is highly stable and suffers from little numerical diffusivity, yielding convincing numerical results for unsteady vortical flows at moderately high Reynolds numbers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Carolina P. Naveira-Cotta ◽  
Jian Su ◽  
Paulo Lucena Kreppel Paes ◽  
Philippe R. Egmont ◽  
Rodrigo P. M. Moreira ◽  
...  

Purpose The purpose of this paper is to investigate the impact of semi-circular zigzag-channel printed circuit heat exchanger (PCHE) design parameters on heat transfer and pressure drop of flows under high Reynolds numbers and provide new thermal-hydraulic correlations relevant to conditions encountered in natural gas processing plants. Design/methodology/approach The correlations were developed using three-dimensional steady-state computational fluid dynamics simulations with varying semicircular channel diameter (from 1 to 5 mm), zigzag angle (from 15° to 45°) and Reynolds number (from 40,000 to 100,000). The simulation results were validated by comparison with experimental results and existing correlations. Findings The results revealed that the thermal-hydraulic performance was mostly affected by the zigzag angle, followed by the ratio of the zigzag channel length to the hydraulic diameter. Overall, smaller zigzag angles favored heat transfer intensification while keeping reasonably low pressure drops. Originality/value This study is, to date, the only one providing thermal-hydraulic correlations for PCHEs with zigzag channels under high Reynolds numbers. Besides, the broad range of parameters considered makes the proposed correlations valuable PCHE design tools.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Étienne Robert ◽  
Peter Ireland

Abstract An experimental and numerical study of the convective heat transfer enhancement provided by two rib families (W and Broken W) is presented, covering Reynolds numbers (Re) between 300,000 to 900,000 in a straight channel with a rectangular cross section (AR=1.29). These high Reynolds numbers were selected for the current study since most data in the available literature typically pertain to investigations at lower Reynolds numbers. The objective of this study is to assess the local heat transfer coefficient (HTC) enhancement (compared with a smooth channel) and the overall thermal performance, taking into account the effect of increased roughness on the friction factor, of a group of W shaped turbulators over a wide range of Reynolds numbers. Furthermore, the effects of increasing the rib spacing on the thermal performance of the Broken W configuration are presented and discussed. The numerical results are compared against heat transfer measurements obtained using the Transient Liquid Crystal (TLC) method. The research shows that for the Broken W turbulators, increasing the Reynolds number is associated with an overall decrease of the thermal performance while the thermal performance of the W configuration is relatively insensitive to Reynolds number. Nevertheless, the Broken W configuration delivers higher thermal performance and heat transfer compared with the W configuration for the range of Re investigated. The Broken W configuration with a pitch spacing of 10 times the rib height was shown to provide the optimal thermal performance in the configurations investigated here.


2006 ◽  
Vol 129 (4) ◽  
pp. 800-808 ◽  
Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e∕Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P∕e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Sign in / Sign up

Export Citation Format

Share Document