Design Approach for Mitigation of Air Ingress in High Temperature Gas-Cooled Reactor
One important safety design consideration for high temperature gas-cooled reactor (HTGR) is air ingress following a rupture of the reactor pressure boundary such as primary piping. The air intrusion to the reactor core held at high temperature through the break will results in significant oxidation of graphite components and fuels. Such oxidation may leads to the weakening of core support structures as well as fuel element damage and subsequent fission product release. This paper intends to propose a practical solution to protect the reactor from severe oxidation against air ingress accidents without reliance on subsystems. Firstly, a change is made to the center reflector structure to minimize temperature difference during the accident condition in order to reduce buoyancy-driven natural circulation in the reactor. Secondly, a modified structure of the upper reflector is suggested to prevent massive air ingress against a rupture in standpipes. As a preliminary study, a numerical analysis is performed for a typical prismatic-type HTGR to study the effectiveness of the proposed design concept using simplified lumped element models. The analysis considers internal decay heat generation and transient conduction from inner to outer regions at the reactor core, cooling of vessel outer surface by radiation and natural convection, and natural circulation flow in reactor. The results showed that amount of air ingress into the reactor can be significantly reduced with practical changes to local structure in the reactor.