Liquid Film Behavior of Bottoming Liquid Jet in a Shallow Pool Measured by 3D-LIF

2021 ◽  
Author(s):  
Sota Yamamura ◽  
Hiroyuki Yoshida ◽  
Naoki Horiguchi ◽  
Akiko Kaneko ◽  
Yutaka Abe

Abstract When the core meltdown accident occurs in the nuclear plant, molten corium falls into a coolant pool of the lower plenum. It is considered that the molten corium jet is broken up, cooled, and solidified with fuel-coolant interaction (FCI). However, the coolant pool could be a shallow condition by the leakage and evaporation of the coolant. In this situation, it is considered that the corium jet bottoms and spreads without the jet breakup. From the viewpoint of safety, understanding a jet behavior and estimating a cooling behavior are needed. The purpose of this study is to clarify the mechanism of the liquid jet behavior in a shallow pool as the fundamental process for estimating the cooling behavior in the real machine. In this paper, we discuss the spreading behavior of the liquid jet after bottoming. The jet injection experiment was conducted using test fluids. By using the 3D-LIF method, the 3D visualization of the liquid jet was Successfully implemented. From the visualization result, the following behaviors were seen. After bottoming, the jet spread radially with the liquid film. As the jet spreading behavior, the liquid film was rolled up to the inside, and the vortex was formed. After a certain time, the vortex was broken. Then the flow and the number density of the fragment were changed.

Author(s):  
Sota Yamamura ◽  
Fumihito Kimura ◽  
Hiroyuki Yoshida ◽  
Akiko Kaneko ◽  
Yutaka Abe

Abstract In some scenarios of severe accidents, the core materials melt and fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant occurs. The aim of this study is to clarify the behavior of liquid jet falling into a shallow pool. In a previous study, it is clarified that, in a shallow pool, the jet spread radially after bottoming, and the atomization occurs with high flow velocity in a shallow pool. the detail of atomization and the spreading of the jet cannot be measured by the limitation of a 2D visualization method. In this study, a 3D-LIF method is used to obtain the detail 3D shape data of the jet. The 3D visualization of the jet is conducted. Using 3D shape data, the liquid film and the atomized droplet are measured. The initial jet velocity is selected as a parameter. As a result, following knowledge is obtained. The thickness of liquid film increases suddenly, and the radius of thin liquid flow increases with the increase of the initial jet velocity. The number of atomized droplets increases with the increase of the initial jet velocity. However, the size of the droplets are not influenced by the initial jet velocity.


1999 ◽  
Vol 9 (4) ◽  
pp. 331-342 ◽  
Author(s):  
Michael P. Moses ◽  
Steven H. Collicott ◽  
Stephen D. Heister

Author(s):  
C.-L. Ng ◽  
K. A. Sallam

The deformation of laminar liquid jets in gaseous crossflow before the onset of primary breakup is studied motivated by its application to fuel injection in jet afterburners and agricultural sprays, among others. Three crossflow Weber numbers that represent three different liquid jet breakup regimes; column, bag, and shear breakup regimes, were studied at large liquid/gas density ratios and small Ohnesorge numbers. In each case the liquid jet was simulated from the jet exit and ended before the location where the experimental data indicated the onset of breakup. The results show that in column and bag breakup, the reduced pressures along the sides of the jet cause the liquid to move to the sides of the jet and enhance the jet deformation. In shear breakup, the flattened upwind surface pushes the liquid towards the two sides of the jet and causing the gaseous crossflow to separate near the edges of the liquid jet thus preventing further deformation before the onset of breakup. It was also found out that in shear breakup regime, the liquid phase velocity inside the liquid jet was large enough to cause onset of ligament formation along the jet side, which was not the case in the column and bag breakup regimes. In bag breakup, downwind surface waves were observed to grow along the sides of the liquid jet triggered a complimentary experimental study that confirmed the existence of those waves for the first time.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 918
Author(s):  
Li-Mei Guo ◽  
Ming Lü ◽  
Zhi Ning

Based on the linear stability analysis, a mathematical model for the stability of a viscous liquid jet in a coaxial twisting compressible airflow has been developed. It takes into account the twist and compressibility of the surrounding airflow, the viscosity of the liquid jet, and the cavitation bubbles within the liquid jet. Then, the effects of aerodynamics caused by the gas–liquid velocity difference on the jet stability are analyzed. The results show that under the airflow ejecting effect, the jet instability decreases first and then increases with the increase of the airflow axial velocity. When the gas–liquid velocity ratio A = 1, the jet is the most stable. When the gas–liquid velocity ratio A > 2, this is meaningful for the jet breakup compared with A = 0 (no air axial velocity). When the surrounding airflow swirls, the airflow rotation strength E will change the jet dominant mode. E has a stabilizing effect on the liquid jet under the axisymmetric mode, while E is conducive to jet instability under the asymmetry mode. The maximum disturbance growth rate of the liquid jet also decreases first and then increases with the increase of E. The liquid jet is the most stable when E = 0.65, and the jet starts to become more easier to breakup when E = 0.8425 compared with E = 0 (no swirling air). When the surrounding airflow twists (air moves in both axial and circumferential directions), given the axial velocity to change the circumferential velocity of the surrounding airflow, it is not conducive to the jet breakup, regardless of the axisymmetric disturbance or asymmetry disturbance.


Author(s):  
Pei Shen ◽  
Wenzhong Zhou

Steam explosion is one of the consequences of fuel-coolant interactions in a severe accident. Melt jet fragmentation, which is the key phenomenon during steam explosion, has not been clarified sufficiently which prevents the precise prediction of steam explosion. The focus of this paper is on the numerical simulation of the melt jet behavior falling into a coolant pool in order to get a qualitative and quantitative understanding of initial premixing stage of fuel-coolant interaction. The objective of our first phase is the simulation of the fragmentation process and the estimation of the jet breakup length. A commercial CFD code COMSOL is used for the 2D numerical analysis employing the phase field method. The simulation condition is similar to our steam explosion test supported by the ALISA (Access to Large Infrastructure for Severe Accidents) project between European Union and China, and carried out in the KROTOS test facility at CEA, France. The simulation result is in relatively good agreement with the experimental data. Then the effect of the initial jet velocity, the jet diameter and the instability theory are presented. The preliminary data of melt jet fragmentation is helpful to understand the premixing stage of the fuel-coolant interaction.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1854 ◽  
Author(s):  
Jin-Peng Guo ◽  
Yi-Bo Wang ◽  
Fu-Qiang Bai ◽  
Fan Zhang ◽  
Qing Du

As a kind of non-Newtonian fluid with special rheological features, the study of the breakup of power-law liquid jets has drawn more interest due to its extensive engineering applications. This paper investigated the effect of gas media confinement and asymmetry on the instability of power-law plane jets by linear instability analysis. The gas asymmetric conditions mainly result from unequal gas media thickness and aerodynamic forces on both sides of a liquid jet. The results show a limited gas space will strengthen the interaction between gas and liquid and destabilize the power-law liquid jet. Power-law fluid is easier to disintegrate into droplets in asymmetric gas medium than that in the symmetric case. The aerodynamic asymmetry destabilizes para-sinuous mode, whereas stabilizes para-varicose mode. For a large Weber number, the aerodynamic asymmetry plays a more significant role on jet instability compared with boundary asymmetry. The para-sinuous mode is always responsible for the jet breakup in the asymmetric gas media. With a larger gas density or higher liquid velocity, the aerodynamic asymmetry could dramatically promote liquid disintegration. Finally, the influence of two asymmetry distributions on the unstable range was analyzed and the critical curves were obtained to distinguish unstable regimes and stable regimes.


Author(s):  
Takayuki Suzuki ◽  
Hiroyuki Yoshida ◽  
Naoki Horiguchi ◽  
Sota Yamamura ◽  
Yutaka Abe

Abstract In the severe accident (SA) of nuclear reactors, fuel and components melt, and melted materials fall to a lower part of a reactor vessel. In the lower part of a reactor vessel, in some sections of the SAs, it is considered that there is a water pool. Then, the melted core materials fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant may occur. This process is called a fuel-coolant interaction (FCI). FCI is one of the important phenomena to consider the coolability and distribution of core materials. In this study, the numerical simulation of jet breakup phenomena with a shallow pool was performed by using the developed method (TPFIT). We try to understand the hydrodynamic interaction under various, such as penetration, reach to the bottom, spread, accumulation of the molten material jet. Also, we evaluated a detailed jet spread behavior and examined the influence of lattice resolution and the contact angle. Furthermore, the diameters of atomized droplets were evaluated by using numerical simulation data.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 676
Author(s):  
Lingzhen Kong ◽  
Tian Lan ◽  
Jiaqing Chen ◽  
Kuisheng Wang ◽  
Huan Sun

The breakup processes and droplet characteristics of a liquid jet injected into a low-speed air crossflow in the finite space were experimentally investigated. The liquid jet breakup processes were recorded by high-speed photography, and phase-Doppler anemometry (PDA) was employed to measure the droplet sizes and droplet velocities. Through the instantaneous image observation, the liquid jet breakup mode could be divided into bump breakup, arcade breakup and bag breakup modes, and the experimental regime map of primary breakup processes was summarized. The transition boundaries between different breakup modes were found. The gas Weber number (Weg) could be considered as the most sensitive dimensionless parameter for the breakup mode. There was a Weg transition point, and droplet size distribution was able to change from the oblique-I-type to the C-type with an increase in Weg. The liquid jet Weber number (Wej) had little effect on droplet size distribution, and droplet size was in the range of 50–150 μm. If Weg > 7.55, the atomization efficiency would be very considerable. Droplet velocity increased significantly with an increase in Weg of the air crossflow, but the change in droplet velocity was not obvious with the increase in Wej. Weg had a decisive effect on the droplet velocity distribution in the outlet section of test tube.


2019 ◽  
Vol 137 ◽  
pp. 140-147 ◽  
Author(s):  
Yulong Xia ◽  
Meng Yuan ◽  
Mo Chen ◽  
Jin Li ◽  
Tianyuan Ci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document