Modeling of Thermal Contact Conductance

Author(s):  
Mikhail V. Murashov ◽  
Sergey D. Panin

Nowadays a new science direction has arisen from decades of experimental work carried out in 20th century — micromechanics of contact processes (deformation, heat transfer, electric conduction). To determine contact area a dynamic elastic-plastic deformation problem is to be solved even in the simplest case — butt contact of two rough surfaces under pressure. It is followed by the solution of spatial boundary heat transfer problem to obtain nonstationary temperature distribution for two bodies. In principal, this stage is not difficult to perform with finite element program ANSYS. Meanwhile the questions concerning deformation and conduction through oxide films of metals as well as directional effect remain. In the literature there are attempts to simulate thermal contact conductance numerically of such authors as M.K.Thompson, S.Lee et al, M. Ciavarella, M.M.Yovanovich and others. The disadvantages of existing spatial models are: - surfaces profiles has no random component; - only elastic or only plastic material behavior; - microroughness is not considered. In the present work the roughness before contact of two rough surfaces of copper bodies was presented as spatial two-level (roughness and microroughness) model with the use of fractal Weierstrass–Mandelbrot function. In quasistatic approach the 3D deformation and heat transfer problems of contacting bodies under pressure were solved within elastic-plastic material behavior. Contact ANSYS elements were used. Copper compression diagram was replaced by multilinear model of isotropic hardening. From the cycle of calculations real contact areas, shapes of contact spots, temperature and stress distributions were determined for the range of pressures. Good agreement with experimental data took place only when microroughness is considered.

Author(s):  
Yongsheng Zhao ◽  
Cui Fang ◽  
Ligang Cai ◽  
Zhifeng Liu

The thermal contact conductance is an important problem in the field of heat transfer. In this research, a three-dimensional fractal theory based on the thermal contact conductance model is presented. The topography of the contact surfaces was fractal featured and determined by fractal parameters. The asperities in the microscale were considered as elastic, elastic-plastic, or plastic deformations. The real contact area of the asperities could be obtained based on the Hertz contact theory. It was assumed that the rough contact surface was composed of numerous discrete and parallel microcontact cylinders. Consequently, the thermal contact conductance of the surface roughness was composed of the thermal constriction conductance of microcontacts and the air medium thermal conductance of microgaps. The thermal contact conductance of rough surfaces could be calculated by the microasperities integration. An experimental set-up with annular interface was designed to verify the presented thermal contact conductance model. Three materials were used for the thermal contact conductance analysis with different fractal dimensions D and fractal roughness parameters G. The numerical results demonstrated that the thermal contact conductance could be affected by the elastic-plastic deformation of the asperities and the gap thermal conductance should not be ignored under the lower contact load. The presented model would provide a theoretical basis for thermal transfer engineering application.


1996 ◽  
Vol 118 (1) ◽  
pp. 3-9 ◽  
Author(s):  
M. R. Sridhar ◽  
M. M. Yovanovich

A New thermal elastoplastic contact conductance model for isotropic conforming rough surfaces is proposed. This model is based on surface and thermal models used in the Cooper, Mikic, and Yovanovich plastic model, but it differs in the deformation aspects of the thermal contact conductance model. The model incorporates the recently developed simple elastoplastic model for sphere-flat contacts, and it covers the entire range of material behavior, i.e., elastic, elastoplastic, and fully plastic deformation. Previously data were either compared with the elastic model or the plastic model assuming a type of deformation a priori. The model is used to reduce previously obtained isotropic contact conductance data, which cover a wide range of surface characteristics and material properties. For the first time data can be compared with both the elastic and plastic models on the same plot. This model explains the observed discrepancies noted by previous workers between data and the predictions of the elastic or plastic models.


1988 ◽  
Vol 110 (4b) ◽  
pp. 1059-1070 ◽  
Author(s):  
L. S. Fletcher

The characteristics of thermal contact conductance are increasingly important in a wide range of technologies. As a consequence, the number of experimental and theoretical investigations of contact conductance has increased. This paper reviews and categorizes recent developments in contact conductance heat transfer. Among the topics included are the theoretical/analytical/numerical studies of contact conductance for conforming surfaces and other surface geometries; the thermal conductance in such technological areas as advanced or modern materials, microelectronics, and biomedicine; and selected topics including thermal rectification, gas conductance, cylindrical contacts, periodic and sliding contacts, and conductance measurements. The paper concludes with recommendations for emerging and continuing areas of investigation.


1988 ◽  
Vol 110 (4b) ◽  
pp. 1046-1058 ◽  
Author(s):  
J. V. Beck

This paper discusses parameter estimation, function estimation, and a combination of the two. An example of parameter estimation is the determination of thermal conductivity of solids from transient temperature measurements. An example of function estimation is the inverse heat conduction problem, which uses transient temperature measurements to determine the surface heat flux history. The examples used herein involve the determination of the thermal contact conductance. Two sets of very good data are analyzed. One set of steady-state data was obtained by Antonetti and Eid (1987). The other set was obtained by Moses and Johnson (1986) under transient conditions for periodic contact. Both sets of data are used to illustrate parameter, function, and combined estimation. It is demonstrated that the proposed methods are more powerful then commonly accepted methods. Many other heat transfer problems can be treated using the proposed techniques.


Sign in / Sign up

Export Citation Format

Share Document