The Static Characteristics of Bump Foil Thrust Bearing Considering Tilting Condition

Author(s):  
Tae-Young Kim ◽  
Dong-Jin Park ◽  
Yong-Bok Lee

Air foil thrust bearings are the critical component available on high-efficiency turbomachinery which needs ability to endure the large axial force. Previous investigations about the static characteristics were obtained over the region of the thin air film using finite-difference method and the characteristics of the corrugated bump foil using finite-element method. Moreover, a recent study demonstrated that bearing performance is sensitive to tilting thrust pad condition. In this study, experimentally measured bearing static characteristics are compared with the numerical model of the foil thrust bearing considering tilting pad condition. Three geometrically different type foil bearings were tested to measure their load capacity under tilting conditions that have continuous angles from zero to 0.0002 rad. These data are presented for use i1n the development of more accurate foil thrust bearing numerical models.

2021 ◽  
Author(s):  
Fangcheng Xu ◽  
Jianhua Chu ◽  
Wenlin Luan ◽  
Guang Zhao

Abstract In this paper, single-bump foil models with different thickness and double-bump foil models with different initial clearances are established. The structural stiffness and equivalent viscous damping of double-bump foil and single-bump foil are analyzed by finite element simulation. The results show that the double-layer bump foil has variable stiffness and the displacement of the upper bump is greater than the initial gap when the two-layer bumps contact. A model for obtaining static characteristics of aerodynamic compliant foil thrust bearing is established on the basis of the stiffness characteristics of the double-bump foil. This paper solves gas Reynolds equation, the gas film thickness equation and the foil stiffness characteristic equation via the finite element method and the finite difference method. The static characteristics of the thrust bearings including the bearing pressure distribution, the gas film thickness and the friction power consumption have been obtained. The static characteristics of two kinds of foils have been compared and analyzed, and the effect of initial clearance on the static performance of double-bump foil bearings is studied. The results show that the double-bump foil structure can effectively improve the load capacity of thrust bearing. In addition, the static performance of double-bump foil thrust bearings is between the performance of the single-bump foil bearing and the double-bump foil bearing whose foil’s clearance is zero. The smaller the initial clearance is, the easier it will be to form a stable double-bump foil supporting structure.


2011 ◽  
Vol 368-373 ◽  
pp. 1392-1395 ◽  
Author(s):  
Quan Zhou ◽  
Yu Hou ◽  
Ru Gang Chen

Because of the low power loss and high stability, foil bearings are suitable lubrication components for high speed rotational systems. At present, the foil bearings used in actual applications almost have complicated structure and are hard to manufacture. In this paper, two kinds of foil thrust bearings with simple structure are presented. Configurations of these two foil thrust bearings are introduced; meanwhile, the load capacity and running stability are also tested in a high speed micro turbine. It is shown that viscoelastic supported foil thrust bearing has higher load capacity and hemisphere convex dots supported foil thrust bearing is more stable in high speed operational condition.


2011 ◽  
Vol 201-203 ◽  
pp. 2759-2762
Author(s):  
Quan Zhou ◽  
Yu Hou ◽  
Ru Gang Chen

Foil bearing that has a soft surface is a kind of air bearing. The performances of foil bearings are greatly affected by the materials of bearing surface, which is called foil element. In order to estimate the performance of foil bearings, two kinds of foil thrust bearings that are made of different materials respectively were tested in a micro turbine system, which contains rotation part and static part. Load capacity and stability of these foil thrust bearings were investigated in experiments. The results show that bearing which contains rubber has higher load capacity and bearing which contains copper foil has higher stability. According to the work in this paper, applications with different requirements can adopt suitable foil thrust bearing.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Abdelrasoul M. Gad ◽  
Shigehiko Kaneko

A new structural stiffness model for the compliant structure in foil gas bearings is introduced in the first part of this work. The model investigates the possibility that the flat segment between bumps, in bump foil strip, may deflect laterally and separate from the rigid bearing surface, and it also considers the interaction between bumps in the bump foil strip, the friction between the bump foil, and the surrounding structure. The validity of the analytical solution was verified through direct comparison with previous numerical and analytical models. In the second part of this work, the introduced bump foil model is used to investigate the static characteristics of generation II gas foil thrust bearing. The numerical simulations of the coupled fluid-structure interactions revealed that the foil thrust bearings share many features with their rigid bearing counterpart and the results showed clearly that the load carrying capacity of foil thrust bearings increases nonlinearly with the rotation speed and is expected to reach an asymptote as the rotation speed exceeds a certain value. The effects of ramp height and interface friction (i.e., friction at bump foil/rigid bearing interface and bump foil/top foil interface) on the static characteristics of generation II foil thrust bearings are investigated.


Author(s):  
Yu Guo ◽  
Yu Hou ◽  
Qi Zhao ◽  
Xionghao Ren ◽  
Shuangtao Chen ◽  
...  

Foil bearing is considered to be a promising supporting technology in high-speed centrifugal machinery. Due to the high-speed shearing effect in the viscous lubricant film, heat generation could not be ignored. In this paper, a thermo-elastic model of the multi-leaf foil thrust bearing is proposed to predict its thermal and static characteristics. In the model, modified Reynolds equation, energy equation, and Kirchhoff equation are solved in a coupling way. The contact area between the foil and welding plate is taken into account. Besides, the effect of cooling air on the bearing temperature is investigated. The ultimate load capacity and transient overload failure process of the bearing is analyzed and discussed. The effect of rotation speed on the bearing temperature is more obvious than that of the bearing load. The bearing temperature drops obviously by introducing the cooling air, and the cooling effect is improved with the supply pressure. The transient overload failure of the bearing occurs when the bearing load exceeds the ultimate value.


Author(s):  
Jason Wilkes ◽  
Ryan Cater ◽  
Erik Swanson ◽  
Kevin Passmore ◽  
Jerry Brady

Abstract This paper will show the influence of ambient pressure on the thrust capacity of bump-foil and spiral-groove gas thrust bearings. The bearings were operating in nitrogen at various pressures up to 69 bar, and were tested to failure. Failure was detected at various pressures by incrementally increasing the thrust load applied to the thrust bearing until the bearing was no longer thermally stable, or until contact was observed by a temperature spike measured by thermocouples within the bearing. These tests were performed on a novel thrust bearing test rig that was developed to allow thrust testing at pressures up to 207 bar cavity pressure at 260°C while rotating at speeds up to 120,000 rpm. The test rig floats on hydrostatic air bearings to allow for the direct measurement of applied thrust load through linkages that connect the stationary thrust loader to the rotor housing. Test results on a 65 mm (2.56 in) bump-foil thrust bearing at 100 krpm show a marked increase in load capacity with gas density, which has not previously been shown experimentally. Results also show that the load capacity of a similarly sized spiral-groove thrust bearing are relatively insensitive to pressure, and supported an order-of-magnitude less load than that observed for the bump-foil thrust bearing. These results are compared with analytical predictions, which agree reasonably with the experimental results. Predicted power loss is also presented for the bump-foil bearing; however, measured power loss was substantially higher.


Author(s):  
Hao Li ◽  
Haipeng Geng ◽  
Lei Qi ◽  
Lu Gan

Foil thrust bearings have attracted considerable attention in small-sized turbo machines with its excellent stability, high compliance, temperature durability. Geometric structure play an important role on the performance of foil thrust bearings. However, the current research on the structure mainly focuses on the underlying foil type, such as bump foil, protuberant bump. In fact, the foil profile, especially in the convergent region has significant influence. In this paper, foil thrust bearings were classified into convex, slope and concave types according to the profile curvature. A numerical model of six pads foil thrust bearing was established by combining the shell model and Reynolds equation. The static and dynamic performance of thrust bearings with different curvature was calculated. The results showed that the convex convergent possessed higher capacity and was not sensitive to displacement disturbance. A stiffness testing system for thrust foil bearing was set up, and the results verified that the foil with convex wedge had higher stiffness. The experiment also indicated that all the thrust foil bearings had typical damping hysteresis. The axial force of a 10 kW on-board compressor was calculated. Based on the conclusion of this paper, the design scheme of curvature value β = 0.6 and gas thickness h2=15 µm was given in consideration of bearing capacity and machining robustness.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Zhiru Yang ◽  
Dongfeng Diao ◽  
Xue Fan ◽  
Hongyan Fan

Nanoparticles-laden gas film (NLGF) was formed by adding SiO2 nanoparticles with volume fraction in the range of 0.014–0.330% and size of 30 nm into the air gas film in a thrust bearing. An effective viscosity of the gas-solid two phase lubrication media was introduced. The pressure distribution in NLGF and the load capacity of the thrust bearing were calculated by using the gas-solid two phase flow model with the effective viscosity under the film thicknesses range of 15–60 μm condition. The results showed that the NLGF can increase the load capacity when the film thickness is larger than 30 μm. The mechanism of the enhancement effect of load capacity was attributed to the increase of the effective viscosity of the NLGF from the pure air film, and the novel lubrication media of the NLGF can be expected for the bearing industry application.


Author(s):  
Jiajia Yan ◽  
Guanghui Zhang ◽  
Zhansheng Liu ◽  
Fan Yang

A modified Reynolds equation for bump type gas foil thrust bearing was established with consideration of the gas rarefaction coefficient. Under rarefied gas lubrication, the Knudsen number which was affected by the film thickness and pressure was introduced to the Reynolds equation. The coupled modified Reynolds and lubricating film thickness equations were solved using Newton-Raphson Iterative Method and Finite Difference Method. By calculating the load capacity for increasing rotor speeds, the lift-off speed under certain static load was obtained. Parametric studies for a series of structural parameters and assembled clearances were carried out for bearing optimization design. The results indicate that with gas rarefaction effect, the axial load capacity would be decreased, and the lift-off speed would be improved. The rarefied gas has a more remarkable impact under a lower rotating speed and a smaller foil compliance coefficient. When the assembled clearance of the thrust bearing rotor system lies in a small value, the lift-off speed increases dramatically as the assembled clearance decreases further. Therefore, the axial clearance should be controlled carefully in assembling the foil thrust bearing. It’s worth noting that the linear uniform bump foil stiffness model is not exact for large foil compliance ∼0.5, especially for lift-off speed analysis, due to ignoring the interaction between bumps and bending stiffness of the foil.


Sign in / Sign up

Export Citation Format

Share Document