A Tomographic Reconstruction Method for Three-Dimensional Liquid Crystal Thermography

1999 ◽  
Author(s):  
D. Mishra ◽  
P. M. Lutjen ◽  
V. Prasad

Abstract Liquid crystal thermography generates two-dimensional temperature information in a fluid layer. Three-dimensional temperature field can be reconstructed using the two-dimensional temperature fields obtained at various locations with the help of synchronized transverse movements of the light sheet and camera (Lutjen et al., 1999). However, it is not feasible to generate a large number of liquid crystal thermographs that are needed for the reconstruction of a high resolution three-dimensional temperature field. A tomographic reconstruction method is suggested here that can be appropriately used to produce a high resolution three-dimensional reconstruction from a limited number of two-dimensional images of the full temperature field. The two-dimensional temperature fields generated from the experiments can be used to obtain an integrated information of the three-dimensional field from various directions known as projections of the actual three-dimensional field and can be used to reconstruct a high resolution volumetric temperature field.

Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


1992 ◽  
Vol 241 ◽  
pp. 587-614 ◽  
Author(s):  
T. Dracos ◽  
M. Giger ◽  
G. H. Jirka

An experimental investigation of plane turbulent jets in bounded fluid layers is presented. The development of the jet is regular up to a distance from the orifice of approximately twice the depth of the fluid layer. From there on to a distance of about ten times the depth, the flow is dominated by secondary currents. The velocity distribution over a cross-section of the jet becomes three-dimensional and the jet undergoes a constriction in the midplane and a widening near the bounding surfaces. Beyond a distance of approximately ten times the depth of the bounded fluid layer the secondary currents disappear and the jet starts to meander around its centreplane. Large vortical structures develop with axes perpendicular to the bounding surfaces of the fluid layer. With increasing distance the size of these structures increases by pairing. These features of the jet are associated with the development of quasi two-dimensional turbulence. It is shown that the secondary currents and the meandering do not significantly affect the spreading of the jet. The quasi-two-dimensional turbulence, however, developing in the meandering jet, significantly influences the mixing of entrained fluid.


2014 ◽  
Vol 9 (4) ◽  
pp. 65-73
Author(s):  
Stepan Tolkachev ◽  
Valeria Kaprilevskaya ◽  
Viktor Kozlov

In the article using a liquid crystal thermography investigated the development of stationary and secondary disturbances, which were excited by cylindrical and two-dimensional roughness elements. It was shown, that two-dimensional roughness element has a destabilizing effect on disturbances, induced by cylindrical roughness element. Also the twodimensional roughness element is able to excite the stationary structures, and then the secondary disturbances the frequency interval of which is lower than in the case of stationary vortices excitation by cylindrical roughness element


1996 ◽  
Vol 306 ◽  
pp. 167-181 ◽  
Author(s):  
John C. Bowman

Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k−5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy-range law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. Implications for conventional numerical simulations are discussed. These results underscore the asymptotic nature of inertial-range scaling laws.


1991 ◽  
Vol 113 (3) ◽  
pp. 627-634 ◽  
Author(s):  
K. Vafai ◽  
J. Ettefagh

The present work centers around a numerical three-dimensional transient investigation of the effects of axial convection on flow and temperature fields inside an open-ended annulus. The transient behavior of the flow field through the formation of a three-dimensional flow field and its subsequent effect on the temperature distribution at different axial locations within the annulus were analyzed by both finite difference and finite element methods. The results show that the axial convection has a distinctly different influence on the temperature and velocity fields. It is found that in the midportion of the annulus a two-dimensional assumption with respect to the temperature distribution can lead to satisfactory results for Ra<10,000. However, such an assumption is improper with respect to the flow field. Furthermore, it is shown that generally the errors for a two-dimensional assumption in the midportion of the annulus are less at earlier times (t<50Δt) during the transient development of the flow and temperature fields.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 52-56
Author(s):  
Dawid Wajnert ◽  
Bronisław Tomczuk

AbstractThis paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.


Author(s):  
Qingyang Yu ◽  
Chao Zhang ◽  
Zhenxue Dai ◽  
Chao Du ◽  
Mohamad Reza Soltanian ◽  
...  

Temperature is an important factor in designing and maintaining tunnels, especially in cold regions. We present three-dimensional numerical simulations of tunnel temperature fields at different temperature conditions. We study the tunnel temperature field in two different conditions with relatively low and high ambient temperatures representing winter and summer of northeast China. We specifically study how these temperature conditions affect tunnel temperature and its migration to surrounding rocks. We show how placing an insulation layer could affect the temperature distribution within and around tunnels. Our results show that the temperature field without using an insulation layer is closer to the air temperature in the tunnel, and that the insulation layer has shielding effects and could plays an important role in preventing temperature migration to surrounding rocks. We further analyzed how thermal conductivity and thickness of insulation layer control the temperature distribution. The thermal conductivity and thickness of insulation layer only affect the temperature of the surrounding rocks which are located at distances below ~20 m from the lining.


Sign in / Sign up

Export Citation Format

Share Document