A Transient Hydrostatic Dynamometer for Single Cylinder Engine Research With Real Time Multi-Cylinder Dynamic Simulation

Author(s):  
John L. Lahti ◽  
Steven J. Andrasko ◽  
John J. Moskwa

A new high-bandwidth transient hydrostatic dynamometer test system has been developed that accurately replicates multi-cylinder engine operation using a single-cylinder research engine. Single-cylinder engines are typically used for research because of their low cost and good cylinder accessibility for instrumentation and optics. This dynamometer maintains these advantages while dramatically improving transient and low speed testing capabilities. The system also incorporates hardware-in-the-loop models for simulation of other components that would typically be present in a vehicle application. These models include: adjoining cylinders and ancillary components in the engine, the transmission, driveline, and vehicle load. Utilizing these models it is possible to replicate actual driving cycles. This high-bandwidth transient dynamometer extends the test capabilities of single-cylinder research far beyond the traditional steady state regime, enabling transient speed single-cylinder engine research while providing single-cylinder engine operation that is comparable to the multi-cylinder engine.

Author(s):  
John L. Lahti ◽  
Matthew W. Snyder ◽  
John J. Moskwa

A transient test system was developed for a single cylinder research engine that greatly improves test accuracy by allowing the single cylinder to operate as though it were part of a multi-cylinder engine. The system contains two unique test components: a high bandwidth transient hydrostatic dynamometer, and an intake airflow simulator. The high bandwidth dynamometer is used to produce a speed trajectory for the single cylinder engine that is equivalent to that produced by a multi-cylinder engine. The dynamometer has high torque capacity and low inertia allowing it to simulate the speed ripple of a multi-cylinder engine while the single cylinder engine is firing. Hardware in loop models of the drivetrain and other components can be used to test the engine as though it were part of a complete vehicle, allowing standardized emissions tests to be run. The intake airflow simulator is a specialized intake manifold that uses solenoid air valves and a vacuum pump to draw air from the manifold plenum in a manner that simulates flow to other engine cylinders, which are not present in the single cylinder test configuration. By regulating this flow from the intake manifold, the pressure in the manifold and the flow through the induction system are nearly identical to that of the multi-cylinder application. The intake airflow simulator allows the intake runner wave dynamics to be more representative of the intended multi-cylinder application because the appropriate pressure trajectory is maintained in the intake manifold plenum throughout the engine cycle. The system is ideally suited for engine control development because an actual engine cylinder is used along with a test system capable of generating a wide range of transient test conditions. The ability to perform transient tests with a single cylinder engine may open up new areas of research exploring combustion and flow under transient conditions. The system can also be used for testing the engine under conditions such as cylinder deactivation, fuel cut-off, and engine restart. The improved rotational dynamics and improved intake manifold dynamics of the test system allow the single cylinder engine to be used for control development and emissions testing early in the engine development process. This can reduce development time and cost because it allows hardware problems to be identified before building more expensive multi-cylinder engines.


Author(s):  
Brian D. Krosschell ◽  
Stephen J. Klick ◽  
John J. Moskwa

The goal of this research is to use a hydrostatic transient dynamometer combined with new control techniques to replicate multi-cylinder engine dynamics which occur while the engine is started by an electric starting system. The transient engine dynamometer test system in the Powertrain Control Research Laboratory (PCRL) uses a torque tube and extremely stiff driveline in order to provide a very high bandwidth of torque actuation. The design and nature of this low inertia, stiff system requires that a standard electrical starting system be omitted. One of the objectives of this research was to assemble a new engine on the hydrostatic dynamometer and model the starting dynamics which occur during an engine cold start. The other objective was to verify and compare data collected by the PCRL and Ford to validate testing. This information will then be used in support of development of a cold start testing procedure on the single-cylinder engine transient test system in the PCRL.


Author(s):  
John J. Moskwa ◽  
Mark B. Murphy

Single-cylinder test engines are used extensively in engine research, and sparingly in engine development, as an inexpensive way to test or evaluate new concepts or to understand in-cylinder motion or combustion. They also allow good access to the cylinder for instrumentation, however, these single-cylinder engines differ significantly in rotational dynamics, gas intake dynamics, heat transfer dynamics, dynamic coupling between cylinders, and in other areas. Charge motion within the cylinder, even during the closed period differs from the multi-cylinder engine because of the differences in both instantaneous flow and momentum. Researchers in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed single-cylinder engine transient test systems that control the instantaneous dynamic cylinder boundary conditions to replicate those in the target multi-cylinder engine. The overall goal is to exploit the benefits of the single-cylinder engine, while eliminating the negative aspects of this device, and to have the single-cylinder “think” it is dynamically operating within a multi-cylinder engine. This paper describes the latest developments in controlling the intake gas dynamics of the single-cylinder engine to meet these goals. A combination of both rotary and proportional valves are used to accurately replicate the instantaneous intake airflow that exists in the multi-cylinder engine, including during transients. A Fourier-based approach instead of the previous time-based trajectory control is used to accomplish these goals. This is a third generation of intake air simulator (IAS3) that is a significant step forward in both simplifying the system, and in significantly expanding the operating envelop of the engine to include the full engine operating range of the multi-cylinder engine. A brief introduction of the entire transient test system will show the reader how rotational, heat transfer, and gas dynamics are controlled, and how the IAS3 fits into this overall system.


Author(s):  
Derek A. Mangun ◽  
John J. Moskwa

Researchers in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed and built a single-cylinder engine transient test system which accurately replicates the dynamic operation of a multi-cylinder engine. Using hardware-in-the-loop (HIL) simulation, the multi-cylinder engine’s transient (a) rotational dynamics, (b) intake gas dynamics, and (c) heat transfer dynamics are reproduced in real time using several patented subsystem designs. These subsystems produce the dynamic boundary conditions that would be present for a given cylinder within a multi-cylinder engine, based on either real-time model execution or predetermined command trajectories (e.g. measured data). In addition to replicating the effects of the virtual cylinders, the test system facilitates extension of the single-cylinder engine capabilities beyond typical steady-state regime limitations. The primary goals of this project are to retain the attributes of the single-cylinder engine that are most beneficial while overcoming the problems which cause the single-cylinder engine to operate differently than a multi-cylinder engine. This system represents a very unique test bed for controlling and understanding the influences of changes in the engine design and control, solves several of the problems associated with the operation of a single-cylinder engine, and allows rapid transient testing with slew rates in excess of 10,000 rpm/s. A virtual powertrain and vehicle model can be incorporated into this system so that standardized vehicle emission testing can be conducted with this single-cylinder engine system (e.g., FTP and other transient drive cycle tests). This paper reports the research findings of the performance effects achieved by including the multi-cylinder dynamic interactions during HIL simulation using only single-cylinder engine hardware. The target engine used for this study is the Ford 3.0 L V-6 SI engine, and both the multi- and single-cylinder engines are resident in the PCRL. By directly comparing the operation of this virtual multi-cylinder transient test system with its actual multi-cylinder engine counterpart, the influences of the included dynamics are documented. Evaluations include comparative data from rotational dynamics and intake gas dynamics, as well as the ability to control heat transfer dynamics and conduct exhaust emission testing.


2006 ◽  
Vol 40 (1/2/3) ◽  
pp. 196 ◽  
Author(s):  
John J. Moskwa ◽  
John L. Lahti ◽  
Matthew W. Snyder

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Manuel Dorsch ◽  
Jens Neumann ◽  
Christian Hasse

In this work, the application of a phenomenological model to determine engine-out hydrocarbon (HC) emissions in driving cycles is presented. The calculation is coupled to a physical-based simulation environment consisting of interacting submodels of engine, vehicle, and engine control. As a novelty, this virtual calibration methodology can be applied to optimize the energy conversion inside a spark-ignited (SI) internal combustion engine at transient operation. Using detailed information about the combustion process, the main origins and formation mechanisms of unburned HCs like piston crevice, oil layer, and wall quenching are considered in the prediction, as well as the in-cylinder postoxidation. Several parameterization approaches, especially, of the oil layer mechanism are discussed. After calibrating the emission model to a steady-state engine map, the transient results are validated successfully against measurements of various driving cycles based on different calibration strategies of engine operation.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Donghui Yang ◽  
Yixin Zhao ◽  
Zhangxuan Ning ◽  
Zhaoheng Lv ◽  
Huafeng Luo

Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.


2004 ◽  
Author(s):  
Michael McMillian ◽  
Steven Richardson ◽  
Steven D. Woodruff ◽  
Dustin McIntyre

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 858 ◽  
Author(s):  
Timothy A. Vincent ◽  
Yuxin Xing ◽  
Marina Cole ◽  
Julian W. Gardner

A new signal processing technique has been developed for resistive metal oxide (MOX) gas sensors to enable high-bandwidth measurements and enhanced selectivity at PPM levels (<50 PPM VOCs). An embedded micro-heater is thermally pulsed from 225 to 350 °C, which enables the chemical reactions in the sensor film (e.g., SnO2, WO3, NiO) to be extracted using a fast Fourier transform. Signal processing is performed in real-time using a low-cost microcontroller integrated into a sensor module. The approach enables the remove of baseline drift and is resilient to environmental temperature changes. Bench-top experimental results are presented for 50 to 200 ppm of ethanol and CO, which demonstrate our sensor system can be used within a mobile robot.


Sign in / Sign up

Export Citation Format

Share Document