Construct Stability of C2 Replacement Strategies
Reconstruction of C2 after tumor destruction and resection remains a significant challenge. Most constructs utilize a strutgraft with plate or screw fixation. A novel C2 prosthesis combining a titanium mesh cage with bilateral C1 shelves and a T-plate has been used successfully in 18 patients. Supplemental posterior instrumentation includes C0-C3 or C1-C3. Biomechanical comparisons of this C2 prosthesis with traditional fixation options have not been reported. Five fresh-frozen human cadaveric cervical spines (C0-C5) were tested intact. Next, the C2 prosthesis, and strut graft and anterior plate constructs were tested with occiput-C3 and C1-C3 posterior fixation. Pure moment loads (up to 1.5 N-m) were applied in flexion and extension, lateral bending, and axial rotation. C1-C3 motion was evaluated using 3 camera motion analysis. Statistical significance was evaluated using one-way repeated measures ANOVA with Student-Newman-Keuls post hoc pairwise comparisons. All constructs provided a statistically significant decrease in motion in this C2 corpectomy model as compared to the intact condition. There was no significant difference in C1-C3 motion between the 4 constructs, regardless of whether the occiput was included in the fixation. Under these loading conditions, both the C2 prostheisis and strut-graft-plate constructs provided initial C1-C3 stability beyond that of the intact specimen. The occiput does not need to be included in the posterior instrumentation.