A Stress Analysis and Strength Estimation of Stepped Lap Adhesive Joints Under Static and Impact Tensile Loadings

Author(s):  
Toshiyuki Sawa ◽  
Kohei Ichikawa

The stress variations and stress distributions in stepped-lap adhesive joints of dissimilar adherends under impact tensile loadings were analyzed in elastic range using three-dimensional finite element method. The impact loadings were applied to the lower adherend by dropping a weight. The stress distributions in stepped-lap adhesive joints of dissimilar adherends under static tensile loadings were also analyzed using FEM. The effects of Young’s modulus of the adherends, the adhesive thickness and the number of butted steps of adherents ware examined under both impact and static loadings. As the results, The maximum value of stress σ1 increased as Young’s modulus of the adherends increased for the impact loadings. The maximum value of stress σ1 increased as the numbers of steps in the adherends increased for the static loadings. In addition, the experiments to measure the strain response of joints subjected to impact tensile loadings were carried out using strain gauges. A fairly good agreement was found between the numerical and the measured results concerning the strain responses.

Author(s):  
Toshiyuki Sawa ◽  
Masahiro Sasaki

The stress variations and stress distributions in scarf and stepped-lap adhesive joints of similar adherends under static and impact tensile loadings were analyzed in elastic range using three-dimensional finite element method. The impact loadings were applied to the lower adherend by dropping a weight. The stress distributions in scarf adhesive joints of similar adherends under static tensile loadings were also analyzed using FEM. The effects of Young’s modulus of the adherends, the adhesive thickness, and the angle of the adherends on the stress distributions at the interfaces between the adherends and the adhesive were examined under static loadings. The maximum value of σ1 decreased as young’s modulus of the adhesive increased in the stepped-lap adhesive joints under static loadings. However, the result of the scarf adhesive joints under static loadings was opposite to the above result. The value of σ1 became minimum when the scarf angle was 52°in the scarf adhesive joint. In addition, the experiments to measure the strain response and strain of joints subjected to impact and static tensile loadings were carried out using strain gauges. Fairly good agreements ware found between the numerical and the measured results.


Author(s):  
Toshiyuki Sawa ◽  
Masahiro Sasaki ◽  
Yuya Hirayama

Scarf adhesive joints used in practice. However, the stress distributions and the joints strengths have not yet been fully elucidate. Important issues are how to determine the scarf angle in adherend and how to determine the adhesive properties. In this study, the stress distributions in scarf adhesive joints under static tensile loadings are analyzed using three-dimensional finite-element calculations. In the FEM calculations, the effects of Young's modulus of the adhesive, adhesive thickness, scarf angle of the adherend on the stress distributions at the adhesive interfaces are examined. The maximum principal stresses were calculated at every element at the interfaces. As the results, it is found that the maximum value of the maximum principal stress occurs at the edge of the adhesive interfaces (z=0, 1/s=1). It is also observed that the maximum value of the stress is the smallest, when the scarf angle is 60 degree. In addition, the joint strength is estimated using the interface stress. For the verification of the FEM calculations, the experiments were carried out to measure the strengths and the strains in the joints under static tensile loadings using strain gauges. Fairly good agreements are observed between the numerical and the measured results concerning the joint strength and the strains.


Author(s):  
Toshiyuki Sawa ◽  
Atsushi Karami

The stress distributions in scarf adhesive joints of dissimilar adherends under static bending moments are analyzed using three-dimensional finite-element calculations. The code employed is ANSYS. In FEM calculations, the effects of Young’s modulus of the adhesive, adhesive thickness, scarf angle of the adherend on the stress distributions at the adhesive interface are examined. As the results, it is found that the maximum value of the maximum principal stress occurs at the edge of the scarf adhesive interface. It is also observed that the maximum value of the stress is minimum, when the scarf angle is 60 degree. In addition, the joint strength is estimated using the obtained stress distribution. For the verification of the FEM calculations, the experiments were carried out to measure the strengths and the strains in the joints under static bending moments using strain gauges. Fairly good agreements are observed between the numerical and the measured results concerning the joint strength and the strains.


Author(s):  
Toshiyuki Sawa ◽  
Takahiro Oomori ◽  
Kohei Ichikawa ◽  
Shoichi Kido

The stress variations and stress distributions in stepped-lap adhesive joints of similar adherends under impact tensile loadings were analyzed in elastic range using three-dimensional finite element method (DYNA3D). The impact loadings were applied to the lower adherend by dropping a weight. The stress distributions in stepped-lap adhesive joints of similar adherends under static tensile loadings were also analyzed using FEM (MARC). The effects of Young’s modulus of the adherends, the adhesive thickness, and a number of steps in the adherends on the stress variations and the stress distributions at the interfaces between the adherends and the adhesive were examined under both impact and static loadings. As the results, it was found that (1) the maximum value of the maximum principal stress σ1 occured at the outside edge of the butted interface between the adhesive and the lower adherend to which impact loadings were applied; (2) The maximum value of stress σ1 increased as Young’s modulus of the adherends increased; (3) The maximum value of stress σ1 increased as the adhesive thickness decreased, and it increased at the butted parts of joints as the adhesive thickness decreased. The maximum value of stress σ1 increased at the lapped parts of joints as the adhesive thickness increased; (4) The maximum value of stress σ1 increased as the numbers of steps in the adherends increased. The characteristic of the joints under static loadings were also clarified. In addition, the experiments to measure the strain response of joints subjected to impact tensile loadings were carried out using strain gauges. A fairly good agreement was found between the numerical and the measured results concerning the strain responses.


Author(s):  
Toshiyuki Sawa ◽  
Yuya Hirayama ◽  
He Dan

The stress wave propagation and stress distribution in scarf adhesive joints have been analyzed using three-dimensional finite element method (FEM). The FEM code employed was LS-DYNA. An impact tensile loading was applied to the joint by dropping a weight. The effect of the scarf angle, Young’s modulus of the adhesive and adhesive thickness on the stress wave propagations and stress distributions at the interfaces have been examined. As the results, it was found that the point where the maximum principal stress becomes maximum changes between 52 degree and 60 degree under impact tensile loadings. The maximum value of the maximum principal stress increases as scarf angle decreases, Young’s modulus of the adhesive increases and adhesive thickness increases. In addition, Experiments to measure the strains and joint strengths were compared with the calculated results. The calculated results were in fairly good agreements with the experimental results.


1999 ◽  
Author(s):  
Jyo Shimura ◽  
Izumi Higuchi ◽  
Toshiyuki Sawa

Abstract The stress behavior in adhesive laminated cantilever beams subjected to impact loadings is analyzed using three-dimensional finite-element method (FEM) in the elastic region. The stress wave propagation and the stress distribution at the interfaces are examined. The effects of Young’s modulus of adherends, adhesive, the adherend thickness and the number of layers on the stress wave propagation at the interfaces are clarified. The following results are obtained. The maximum principal stress (σ1) is maximal at the adhesive interfaces. It is found that the maximum principal stress (σ1) at the adhesive interface increases as the Young’s modulus of the upper adherends increases. The maximum principal stress (σ1) at the adhesive interface increases as Young’s modulus of the adhesive increases. The maximum principal stress (σ1) at the adhesive interface decreases as the thickness of the adherend to which an impact load is applied increases. It is seen that the maximum principal stress (σ1) increases as number of layers increases. Experiments were carried out to measure the strain response of adhesive laminated cantilever beam using strain gauges. A fairly good agreement is seen between the analytical and experimental results.


Author(s):  
Yukiya Noshita ◽  
Toshiyuki Sawa ◽  
Yuya Omiya

Stress distributions in CFRP adhesive laminated plates subjected to static and impact out-of-plane loadings are analyzed using a three-dimensional finite-element method (FEM). For establishing an optimum design method of the laminated plates, the effects of some factors are examined. As the results, it is found that the maximum value of the von Mises equivalent stress σ eqv occurs at the edge of the CFRP’s interfaces. The maximum value of interface shear stress r i at CFRP interface decreases as the reinforced Young’s modulus and the thickness increases. However, the maximum value of σ eqv at the adhesive layer decreases as the reinforced Young’s modulus and the thickness decreases. In addition, the maximum value of r i at the CFRP’s interface of lower reinforced laminates under impact loadings shows opposite characteristics to those under static loadings. For verification of the FEM calculations, experiments were carried out to measure the strains at the interfaces and the laminates plates strengths. Concerning strain and strength prediction based on von Mises equivalent stress, fairly good agreements were found between the numerical and the experimental results. The FEM results of impacted strain are in fairly good consistent with the measured results. Discussion is made on the effects of some factors on interface stress distributions.


Author(s):  
Ryo Nogaito ◽  
Toshiyuki Sawa ◽  
Atsushi Karami

Stress distributions in adhesive-rivets combination joints subjected static bending moments are calculated using three-dimensional finite-element calculations. The stress propagation and stress distribution subjected to impact bending moments are also calculated using three-dimensional FEM calculations. In the FEM calculations, the effects of number, position and diameter of rivets, and Young’s modulus of the rivet on the stress distributions at the adhesive interface are examined from fail-safe design standpoints. From the FEM results, the maximum value of peel stress decreases as the position of rivets in the axial direction is decreased and the position of rivets in the width direction increases in the joints with two and four rivets. It is also found that the results on the stress distributions in the joints under the static bending moments show the same tendency of the joints under the impact in-plane bending moments. Concerning the effect of Young’s modulus of the rivet, it is not seen on the peel stress under the static in-plane bending moments. For the verification of the FEM calculations, the experiments were carried out to measure the strain response under both static and impact load conditions. Fairly good agreements are observed between the FEM calculations and the measured results.


2010 ◽  
Vol 25 (5) ◽  
pp. 935-942 ◽  
Author(s):  
Xiaoxia Wu ◽  
Syed S. Amin ◽  
Terry T. Xu

The Young’s modulus of single crystalline rutile TiO2 nanoribbons was investigated using nanoindentation. During the experiments, the nanoribbons were laid on three different substrates, including 1 μm thick SiO2 layer on silicon (SiO2/Si), Si(100), and sapphire(0001). Experimental results show the substrates have significant effects on load-indenter displacement curves. To further understand the experimental findings, three-dimensional finite element modeling was carried out to simulate the indentation of nanoribbon-on-substrate systems using ABAQUS. The results show that the receding contact mechanics is a good approximation when describing the contact between the nanoribbon and the substrate. The results also demonstrate that the substrate effect must be carefully considered when performing nanoindentation on one-dimensional nanostructures. Otherwise, the Young’s modulus of the nanostructures could either be overestimated or underestimated. The Young’s modulus is about 360 GPa, comparable to that of bulk TiO2.


2007 ◽  
Vol 344 ◽  
pp. 647-654 ◽  
Author(s):  
Xiao Cong He ◽  
Ian Pearson ◽  
Ken W. Young

Self-pierce riveting (SPR) is nowadays widely used in the car manufacturing industry where aluminium alloys are used for body construction. For the design of mechanical structures, formed by the joining of component parts, a knowledge of the vibration characteristics of different joint types (adhesive bonding, spot welding, SPR etc) is essential. The free transverse vibration characteristics of single lap-jointed encastre SPR beams are investigated theoretically in this paper using the three dimensional finite element method (FEM). Numerical examples are provided to show the influence on the natural frequencies, natural frequency ratios and mode shapes of these beams caused by variations in the material properties (E and υ) of the sheet material. It is shown that the transverse natural frequencies of single lap jointed encastre SPR beams increases significantly as the Young’s Modulus of the sheets increases, but only slight changes are encountered for variations of Poisson’s Ratio. It is found that an exponential curve gives an acceptable fit to the relationship between natural frequency and Young’s Modulus. As expected, odd modes shapes were found to be symmetrical about the mid-length position and even modes were anti-symmetrical.


Sign in / Sign up

Export Citation Format

Share Document