Adaptive Sliding Mode Controller With Proportional Plus Integral Sliding Surface

Author(s):  
J. Fei ◽  
Celel Batur

This paper presents an adaptive tracking controller with a proportional and integral switching surface. A new adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of linear dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then an adaptive sliding mode controller is derived and its stability is proved. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The adaptive design is extended to the multiple inputs system. The numerical simulation is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.

Author(s):  
J Fei ◽  
C Batur

This paper presents an adaptive sliding mode tracking controller with a proportional and integral switching surface. A novel adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then a class of adaptive sliding mode controller with integral sliding term is developed. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The numerical simulation of a triaxial gyroscope is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.


Author(s):  
J. Fei ◽  
C. Batur

This paper presents a novel adaptive sliding mode control with a sliding mode observer for a MEMS gyroscope. The proposed adaptive sliding mode controller with a sliding mode observer which reconstructs the unmeasured states can estimate the angular velocity and the linear damping and stiffness coefficients of the gyroscope despite parameter variations and external disturbance. An adaptive sliding mode controller with a proportional and integral sliding surface is derived and the stability condition of the closed-loop system is established. The numerical simulation for the MEMS gyroscope model is performed to verify the effectiveness of the proposed adaptive sliding mode control with sliding mode observer.


2018 ◽  
Vol 41 (7) ◽  
pp. 1880-1887
Author(s):  
Yonghui Liu

The problem of adaptive sliding mode control is considered for a class of stochastic switched systems with actuator degradation. In this work, the input matrix for each subsystem is unnecessarily the same. Thus, a weighted sum approach of the input matrices is introduced such that a common sliding surface is designed. By online estimating the loss of effectiveness of the actuators, an adaptive sliding mode controller is designed. It can not only compensate the effect of the actuator degradation effectively, but also reduce the conservatism that the bound of the actuator faults should be known in advance. Moreover, it is shown that the reachability of the sliding surface can be guaranteed. Furthermore, sufficient conditions on the mean-square exponential stability of the sliding mode dynamics are obtained via the average dwell time method. Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Wafaa Jawaada ◽  
M. S. M. Noorani ◽  
M. Mossa Al-Sawalha ◽  
M. Abdul Majid

A novel reduced-order adaptive sliding mode controller is developed and experimented in this paper to antisynchronize two different chaotic systems with different order. Based upon the parameters modulation and the adaptive sliding mode control techniques, we show that dynamical evolution of third-order chaotic system can be antisynchronized with the projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to two examples: firstly Lorenz (4th-order) and Lorenz (3rd-order) and secondly the hyperchaotic Lü (4th-order) and Chen (3rd-order). Theoretical analysis and numerical simulations are shown to verify the results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gangfeng Yan

Purpose The purpose of this paper is to achieve high-precision sliding mode control without chattering; the control parameters are easy to adjust, and the entire controller is easy to use in engineering practice. Design/methodology/approach Using double sliding mode surfaces, the gain of the control signal can be adjusted adaptively according to the error signal. A kind of sliding mode controller without chattering is designed and applied to the control of ultrasonic motors. Findings The results show that for a position signal with a tracking amplitude of 35 mm, the traditional sliding mode control method has a maximum tracking error of 0.3326 mm under the premise of small chattering; the boundary layer sliding mode control method has a maximum tracking error of 0.3927 mm without chattering, and the maximum tracking error of continuous switching adaptive sliding mode control is 0.1589 mm, and there is no chattering. Under the same control parameters, after adding a load of 0.5 kg, the maximum tracking errors of the traditional sliding mode control method, the boundary layer sliding mode control method and the continuous switching adaptive sliding mode control are 0.4292 mm, 0.5111 mm and 0.1848 mm, respectively. Originality/value The proposed method not only switches continuously, but also the amplitude of the switching signal is adaptive, while maintaining the robustness of the conventional sliding mode control method, which has strong engineering application value.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Jianguo Guo ◽  
Hao Zhang ◽  
Xiaodong Lu ◽  
Jun Zhou

In this paper, a new adaptive sliding mode control method is presented for the longitudinal model of a generic hypersonic vehicle subject to uncertainties and external disturbance. Firstly, an oriented-control model with mismatched uncertainties is built for a generic hypersonic vehicle. Secondly, the back-stepping technique is introduced to design a sliding mode controller with an adaptive law to adapt to the disturbance and uncertainty. Thirdly, a set of nonlinear disturbance observers are designed to estimate the lumped disturbance and compensate the sliding mode controller, and the stability of the proposed controller is analyzed by utilizing Lyapunov stability theory. Finally, simulation results show that the effectiveness of the proposed controller is validated by the nonlinear model and the proposed method exhibits promising robustness to mismatched uncertainties.


Sign in / Sign up

Export Citation Format

Share Document