Engine Mount Optimization for Vibration Isolation in Motorcycles

Author(s):  
Sudhir Kaul ◽  
Anoop K. Dhingra ◽  
Timothy G. Hunter

This paper presents a comprehensive model to capture the dynamics of a motorcycle system in order to evaluate the quality of vibration isolation. The two main structural components in the motorcycle assembly - the frame and the swing-arm - are modeled using reduced order finite element models; the power-train assembly is modeled as a six degree-of-freedom (DOF) rigid body connected to the frame through the engine mounts and to the swing-arm through a shaft assembly. The engine mounts are modeled as tri-axial spring-damper systems. Models of the front-end assembly as well as front and rear tires are also included in the overall model. The complete vehicle model is used to solve the engine mount optimization problem so as to minimize the total force transmitted to the frame while meeting packaging and other side constraints. The mount system parameters - stiffness, position and orientation vectors - are used as design variables for the optimization problem. The imposed loads include forces and moments due to engine imbalance as well as loads transmitted due to irregularities in the road surface through the tire patch.

2007 ◽  
Vol 129 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Sudhir Kaul ◽  
Anoop K. Dhingra ◽  
Timothy G. Hunter

This paper examines the influence of frame flexibility on the optimization of an engine mounting system for enhanced vibration isolation in motorcycles. A theoretical model is developed to represent the structural dynamics of an engine mount system in motorcycles. The model consists of the power-train assembly, modeled as a six-degree-of-freedom (DOF) rigid body; the swing arm assembly, connected to the power-train through a coupler shaft assembly; and the frame, connected to the power-train by elastomeric mounts and to the swing-arm through the rear suspension. Two models of the flexible frame are developed for analysis. The first model uses an equivalent stiffness matrix of the frame, derived from its finite element model, in terms of the nodes connecting the frame to the other subsystems. The second model is based on a dynamic model of the frame as well as the swing arm derived from their respective finite element models. The optimization procedure minimizes the load transmitted to the frame while constraining the engine displacement due to imposed loads within prescribed limits. The mount stiffnesses, locations and orientations are used as design variables. Examples are presented to demonstrate the influence of frame flexibility on the force transmitted to the frame.


Author(s):  
Fadi Alkhatib ◽  
Anoop K. Dhingra

In this article, a parametric approach is used to determine the optimum geometric shape of an engine mount in order to minimize the vibrations transmitted to and from the engine. The engine mount used is an elastomeric mount which is made of rubber. For proper vibration isolation, elastomeric mounts are designed such that they have the necessary elastic stiffness rate characteristics in all directions. An optimization problem is first solved to determine the optimum values of stiffness, orientation and location of the mount system such that vibrations transmitted are minimal. Besides determining the optimum mount stiffness values, knowing the optimum shape of the rubber mount is also vital. The shape of the mount is determined such that it meets the required stiffness of the mounting system obtained from the dynamic analysis. A nonlinear finite element analysis is used to determine the final optimum shape and stiffness of the mount.


Author(s):  
Sudhir Kaul ◽  
Anoop K. Dhingra

This paper presents a Response Surface Modeling (RSM) approach for solving the engine mount optimization problem for a motorcycle application. A theoretical model that captures the structural dynamics of a motorcycle engine mount system is first used to build the response surface model. The response surface model is then used to solve the engine mount optimization problem for enhanced vibration isolation. Design of Experiments (DOE), full factorial and fractional factorial formulations, are used to construct the governing experiments. Normal probability plots are used to determine the statistical significance of the variables and the significant variables are then used to build the response surface. The design variables for the engine mount optimization problem include mount stiffness, position vectors and orientation vectors. It is seen that RSM leads to a substantial reduction in computational effort and yields a simplified input-output relationship between the variables of interest. However, as the number of design variables increases and as the response becomes irregular, conventional use of RSM is not viable. Two algorithms are proposed in this paper to overcome the issues associated with the size of the governing experiments and problems associated with modeling of the orientation variables. The proposed algorithms divide the design space into sub-regions in order to manage the size of the governing experiments without significant confounding of variables. An iterative procedure is used to overcome high response irregularity in the design space, particularly due to orientation variables.


Author(s):  
Hashem Ashrafiuon

Abstract Design optimization of aircraft engine-mount systems for vibration isolation is presented. The engine is modeled as a rigid body connected to a flexible base representing the nacelle. The base is modeled with mass and stiffness matrices and structural damping using finite element modeling. The mounts are modeled as three-dimensional springs with hysteresis damping. The objective is to select the stiffness coefficients and orientation angles of the individual mounts to minimize the transmitted forces from the engine to the base. Meanwhile, the mounts have to be stiff enough not allowing engine deflection to exceed its limits under static and low frequency loadings. It is shown that with an optimal system the transmitted forces may be reduced significantly particularly when mount orientation angles are also treated as design variables. The optimization problems are solved using a Constraint Variable Metric approach. The closed form derivatives of the engine vibrational amplitudes with respect to design variables are derived in order to achieve a more effective optimization search technique.


Author(s):  
Omid Mohareri ◽  
Siamak Arzanpour

The hydraulic engine mount (HEM) has been designed to provide a vibration isolation characteristic to control road and engine induced vibrations in vehicles by using two fluid passages known as decoupler and inertia track. These types of engine mounts are known for their best noise, vibration, and harshness (NVH) suppression performance among other different types of engine mounts. However, a low cost technique to recycle the dissipated energy of the system in the process of vibration suppression is significantly advantageous. A novel design structure in which the decoupler is replaced with a water turbine to capture and restore the vibration energy of the system is presented in this paper. The turbine design and selection has been done based on the upper and lower chamber pressures and the fluid flow rates in the system’s resonant frequency. The mount vibration isolation and energy generation performance is studied in both frequency and time domains. The simulation results demonstrate that a considerable amount of energy can be harvested from the engine vibration sources. This recent study demonstrates a novel energy harvesting technique in vehicles that require minimum design modifications of conventional hydraulic mounts.


2018 ◽  
Vol 26 (5-6) ◽  
pp. 380-388
Author(s):  
Bijuan Yan ◽  
Binhui Han ◽  
Jun Wang ◽  
Dagang Sun

In this article, a kind of tubular sandwiched engine mount (TSEM) was first used in the trackless rubber-tyred vehicles (TRTVs). TRTV have been playing an important role in underground mining. However, during the working of TRTV, the vibrations are always violent and these vibrations are very harmful. Therefore, reducing the vibration of TRTV has become an urgent and important matter. The TSEM was made of three layers, that is, the external layer, the internal layer and the middle layer. The finite element analysis (FEA) was carried out to find out whether the deformation of TSEM could meet the design requirements. To grasp the vibration isolation feature of the TSEM, the tests were performed under two working conditions of TRTVs. The results show that the rear engine mounts could always get good vibration-reducing performance, whereas the performance of the front mounts is sometimes poor in a certain direction, that is, perhaps owing to the vibration energy coupling in different directions. In addition, the vibration of the seat was measured. The test results show that the vertical acceleration is reduced when the vehicle is installed with the TSEM, compared with that of the seat when the vehicle is equipped with the existing old mounts. The results in this article could provide a good reference for the application of the tubular sandwiched structure in different rubber-tyred vehicles.


2014 ◽  
Vol 945-949 ◽  
pp. 1465-1469 ◽  
Author(s):  
Myeong Hyeon Kim ◽  
Hyun Chang Kim ◽  
Dong Pyo Hong ◽  
Dae Gab Gweon

This paper proposes the concept development and design of a VCM actuator for Active Vibration Isolation System (AVIS). Active vibration isolating method was constructed passive isolator and active isolator. Spring was used for isolating passively and actuator like voice coil motor was used for active isolating. The proposed active vibration isolating system could isolate a six degree-of-freedom disturbance effectively. In case of AVIS, payload is variable according to the type of instruments. Therefore, actuator should maintain uniform performance with payload change. The proposed VCM actuator satisfied this performance through relative relation between magnet array and coils. In addition, for maximizing actuator performance, actuator should generate large force density. Therefore, we apply the Halbach magnet array to proposed actuator. The Halbach magnet array helps with reinforcing magnetic flux field. The reinforced magnetic field takes a role to generate more powerful Lorentz force to isolate disturbance. Finally, in this paper, we propose the actuator that novel type using voice coil motor with the Halbach magnet array and optimize each design variables to generate maximum output. These AVIS can use to eliminate disturbance in Maglev stage. Maglev stage need AVIS to increase its performance is necessary. In the future, AVIS and Maglev system will be integrated.


1993 ◽  
Vol 115 (4) ◽  
pp. 463-467 ◽  
Author(s):  
H. Ashrafiuon

Design optimization of aircraft engine-mount systems for vibration isolation is presented. The engine is modeled as a rigid body connected to a flexible base representing the nacelle. The base (nacelle) is modeled with mass and stiffness matrices and structural damping using finite element modeling. The mounts are modeled as three-dimensional springs with hysteresis damping. The objective is to select the stiffness coefficients and orientation angles of the individual mounts in order to minimize the transmitted forces from the engine to the nacelle. Meanwhile, the mounts have to be stiff enough not to allow the engine deflection to exceed its limits under static and low frequency loadings. It is shown that with an optimal system the transmitted forces may be reduced significantly particularly when orientation angles are also treated as design variables. The optimization problems are solved using a constraint variable metric approach. The closed form derivatives of the engine vibrational amplitudes with respect to design variables are derived in order to determine the objective function gradients and consequently a more effective optimization search technique.


Author(s):  
Caner Boral ◽  
Ender Cig˘erog˘lu ◽  
I˙brahim Korkmaz

Automotive engine mounts are used to protect engine from road irregularities and to isolate transmission of vibrations created by the engine which have a drastic effect on the noise generated inside the passenger cabin. Most common types of engine mounts are elastomeric and hydraulic mounts, the former having better vibration isolation characteristics whereas the latter displays better shock isolation. Elastomeric mounts are widely used for their low initial cost, while hydraulic mounts with inertia track and decoupler are chosen for their good vibration isolation and shock excitation characteristics. However, hydraulic mounts with inertia track and decoupler are not appropriate for small segment and commercial vehicles due to their high initial cost. In this paper, the effect of the addition of a dry friction damper on the performance of elastomeric automobile engine mounts is investigated. Results showed that addition of dry friction damping to the elastomeric engine mount significantly improves the transmissibility throughout a wide frequency range where the best results are obtained at the resonance frequency.


2007 ◽  
Vol 129 (4) ◽  
pp. 417-424 ◽  
Author(s):  
A. R. Ohadi ◽  
G. Maghsoodi

In this paper, vibration behavior of engine on the nonlinear hydraulic engine mount, including inertia track and decoupler, is studied. In this regard, after introducing the nonlinear factors of this mount (i.e., inertia and decoupler resistances in turbulent region), the vibration governing equations of engine on one hydraulic engine mount are solved and the effect of nonlinearity is investigated. In order to have a comparison between the rubber and the hydraulic engine mounts, a six-degree-of-freedom four-cylinder V-shaped engine under shaking and balancing mass forces and torques is considered. By solving the time domain nonlinear equations of motion of the engine on three inclined mounts, translational and rotational motions of an engine body are obtained for different engine speeds. Transmitted base forces are also determined for both types of engine mount. Comparison of rubber and hydraulic mounts indicates the efficiency of a hydraulic one in the low-frequency region.


Sign in / Sign up

Export Citation Format

Share Document