Adaptive and Repetitive Control for Rejecting Repeatable and Non-Repeatable Runout in Rotating Devices

Author(s):  
Ne´stor O. Pe´rez Arancibia ◽  
Chi-Ying Lin ◽  
Tsu-Chin Tsao ◽  
James S. Gibson

This paper presents a control scheme for rejecting both repeatable and non-repeatable runout components of disturbances occurring in rotational devices. To exemplify this method, implementation and experimental results for track following control of a computer hard disk drive (HDD) read/write heads are presented. Aiming for high performance, the control design involves two steps. The first is the design and tuning of a recursive least-squares (RLS) based scheme intended to achieve minimum variance performance. The second step integrates repetitive and adaptive control schemes in a real-time implementation to compensate for variations and changes in the disturbance dynamics. The repetitive part of this controller targets specific periodic disturbances. The adaptive part compensates for broad bandwidth stochastic disturbances. The key element in this design is the formulation of an appropriate optimization problem, solvable recursively by applying recursive adaptive algorithms. Experimental results obtained from the implementation of this method in a commercial HDD demonstrates the effectiveness of this approach.

1996 ◽  
Vol 118 (3) ◽  
pp. 416-424 ◽  
Author(s):  
Alexei Sacks ◽  
Marc Bodson ◽  
Pradeep Khosla

This paper considers the implementation of an adaptive algorithm for periodic disturbance cancellation. It is shown that the maximum rate of adaptation can be calculated precisely based on measurements of the system’s frequency response. The response of the closed-loop system to additional disturbances can also be computed on that basis. The results are verified experimentally on a high track density magnetic disk drive. Excellent matching between the theoretical and experimental results is observed. An improved method is also proposed that leads to faster convergence of the adaptive algorithm and better disturbance rejection capabilities. The results of this paper significantly enhance the ability of the control engineer to design and analyze adaptive feedforward algorithms for a variety of applications where periodic disturbances are encountered.


1989 ◽  
Vol 111 (3) ◽  
pp. 452-461 ◽  
Author(s):  
M. C. Leu ◽  
D. I. Freed

A method for determining the feedback coefficients of pseudo-derivative-feedback control is presented, along with applications of this control scheme. Simulations are performed for controlling a linear inertia system with disturbance loads and inertia variations, and for controlling a nonlinear system represented by a manipulator arm. The results show that PDF subvariable control quickly rejects disturbances and is insensitive to inertia variations. Also, the position responses do not exhibit overshoot or oscillation. Comparison with the results for proportional-plus-velocity-feedback control shows that the PDF approach is superior in response speed, robustness, and disturbance-handling ability. Experimental results from implementation of both control schemes to a revolute manipulator support this conclusion.


Author(s):  
Rachid El Akhrif ◽  
Ahmed Abbou ◽  
Mohamed Barara ◽  
Mohamed Akherraz ◽  
Youssef Majdoub

The present work describes the analysis  of a control scheme for keeping  the  RMS voltage output  constant, the system is  supplying  by a self-excited induction generator with variable speed and load. A comparison is examined between simulation and experimental results using dSPACE board. the results are provided to verify the effectiveness of this approach and gives very high performance.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Nicholas Hawkins ◽  
Bhagyashri Bhagwat ◽  
Michael L. McIntyre

In this paper, a nonlinear controller is proposed to manage the rotational speed of a full-variable Squirrel Cage Induction Generator wind turbine. This control scheme improves upon tractional vector controllers by removing the need for a rotor flux observer. Additionally, the proposed controller manages the performance through turbulent wind conditions by accounting for unmeasurable wind torque dynamics. This model-based approach utilizes a current-based control in place of traditional voltage-mode control and is validated using a Lyapunov-based stability analysis. The proposed scheme is compared to a linear vector controller through simulation results. These results demonstrate that the proposed controller is far more robust to wind turbulence than traditional control schemes.


Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Jia-Ning Guo ◽  
Jian Zhang ◽  
Gang Xin ◽  
Lin Li

As a novel mode of indoor wireless communication, visible light communication (VLC) should consider the illumination functions besides the primary communication function. Dimming control is one of the most crucial illumination functions for VLC systems. However, the transmission efficiency of most proposed dimming control schemes changes as the dimming factor changes. A block coding-based dimming control scheme has been proposed for constant transmission efficiency VLC systems, but there is still room for improvement in dimming range and error performance. In this paper, we propose a dimming control scheme based on extensional constant weight codeword sets to achieve constant transmission efficiency. Meanwhile, we also provide a low implementation complexity decoding algorithm for the scheme. Finally, comparisons show that the proposed scheme can provide a wider dimming range and better error performance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6041
Author(s):  
Fredy A. Valenzuela ◽  
Reymundo Ramírez ◽  
Fermín Martínez ◽  
Onofre A. Morfín ◽  
Carlos E. Castañeda

A DC motor velocity control in feedback systems usually requires a velocity sensor, which increases the controller cost. Additionally, the velocity sensor used in industrial applications presents several disadvantages such as maintenance requirements and signal conditioning. In this work, we propose a robust velocity control scheme applied to a DC motor based on estimation strategies using a sliding-mode observer. This means that measurements with mechanical sensors are not required in the controller design. The proposed observer estimates the rotational velocity and load torque of the motor. The controller design applies the exact-linearization technique combined with the super-twisting algorithm to achieve robust performance in the closed-loop system. The controller validation was carried out by experimental tests using a workbench, which is composed of a control and data acquisition Digital Signal Proccessor board, a DC-DC electronic converter, an interface board for signals conditioning, and a DC electric generator connected to an adjustable resistive load. The simulation and experimental results show a significant performance of the proposed control scheme. During tests, the accuracy, robustness, and speed response on the controller were evaluated and the experimental results were compared with a classic proportional-integral controller, which uses a conventional encoder.


Sign in / Sign up

Export Citation Format

Share Document